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1 Introduction 
 
The Perpetual Testing project was a member of the High Assurance cluster of projects in 
the DARPA program Evolutionary Design of Complex Software (EDCS).  The Perpetual 
Testing project as a whole was a collaboration of Purdue University (continued at 
University of Oregon), University of Massachusetts, and University of California, Irvine. 
This report describes only the portion of the work conducted at Purdue and University of 
Oregon under cooperative agreement F30602-97-2-0034 with U.S. Air Force Research 
Laboratory, Rome New York  13441-4514. 
 
The current development paradigm treats testing as a phase that succeeds development 
and precedes delivery. The goal of the Perpetual Testing project was to build a 
foundation for treating analysis and testing as on-going activities to improve quality 
assurance through generations of a project. This goal evolved somewhat during the 
course of the research, and some of it was retargeted and carried forward into the 
DARPA DASADA program, but overall the focus has remained on key aspects of 
Evolutionary Development of Complex Software: on methods and supporting technology 
suitable for evolving software, including analysis and test that continues beyond initial 
deployment, and on techniques that exploit modularity to permit piecemeal analysis and 
testing of large, complex systems. 
 

2 Main sub-projects and results 
 
The main parts of the Perpetual Testing project at Purdue and later at University of 
Oregon were 
 
Residual testing: Extending test coverage monitoring from its conventional place in the 

development environment to continued monitoring of deployed software. 
 
Design refactoring for analysis: Supporting complex relations between the “as built” 

structure of an implementation and a logical structure that is more amenable to 
modular, incremental analysis. 

 
Object protocol specification and checking: Enriching class interfaces in object-

oriented programs with precise, checkable ordering constraints on method calls. 
 
Flow analysis as Swiss army knife: Development of lightweight, flexible support for a 

variety of analyses and transformations using flow analysis algorithms. 
 
These sub-projects reached different stages of development during the project. The 
residual testing project resulted first in a “proof of concept” prototype tool, some 
experimental measurements, and a paper. The initial results were promising, but the tool 
was fragile and completely unsuitable as a vehicle for technology transition or even for 
use by other researchers. We decided to invest resources in producing a new tool based 
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on the same concepts but redesigned and re-implemented from the ground up. 
Fortunately the student programmer assigned this task, Carl Howells, was very 
knowledgeable and talented. The resulting tool, Gretel, is in use by several commercial 
organizations and has also been incorporated in a research project at Georgia Tech. The 
Georgia tech project, led byMary Jean Harrold, is building on a vision consistent with our 
original goals for residual testing. 
 
Design refactoring for analysis has resulted in a “proof of concept” prototype, and results 
with some model applications have been reported in the literature. However, we believe 
there are years of effort required before it will reach a level of maturity comparable to our 
Gretel tool for residual testing, and it would not even be sensible to devote resources to a 
production quality tool until more of the fundamental problems are worked through. This 
project was the dissertation topic of Yung-Pin Cheng, who continues to pursue the 
research in his new position on the faculty of National Taiwan Normal University. 
 
Object protocol specification and monitoring has also resulted in a “proof of concept” 
prototype, and has been described in the literature. There has lately been a flurry of 
research by others with similar goals, most (like ours) implemented as extensions or 
annotations for Java programs. An aspect of our approach that remains unique and, in our 
view, crucial is the way static interface compatibility checking is combined with dynamic 
run-time checks. If continued to conclusion, this work should lead to systems in which 
architectural descriptions are linked to object protocols in design and implementation and 
carried forward to dynamic checks during testing and after deployment, as well as richer 
checking for deviations from architectural design and interfaces during software 
evolution. This work has been carried out in collaboration with researchers at Ohio State 
University and continues under the DASADA program. We are seeking other sources of 
funding to continue it after the conclusion of the DASADA program. 
 
We did not anticipate a major thrust in flow analysis in the original vision for our part of 
the Perpetual Testing project, although it was a centerpiece in the technology developed 
by one of our collaborators (the FLAVERS tool at University of Massachusetts) Our first 
foray in this direction was in service to the redesign for analysis thrust, when we noticed 
that flow analysis algorithms could be used to extract useful information from legacy 
concurrent programs. The sort of analysis we envisioned was completely outside what 
FLAVERS could be used for, even though at some very basic level we were applying the 
same flow analysis algorithms. An M.S. student, Jeyde Rajamani, produced a pair of 
prototype tools that carried out these analyses. They were very efficient but each was 
custom-built for a single task. This led us to design more general tool support in the form 
of a “little language,” which eventually became GenSet. The GenSet effort was continued 
but retargeted as we turned our attention to the goals of the DASADA program. 
Development of GenSet will continue until the conclusion of the DASADA program, 
where currently it is focused on design information fusion (including but not limited to 
information extracted from implementations). We believe that it will have many other 
uses, and that in particular it will serve researchers who wish to quickly prototype and 
test novel applications of flow analysis without building yet another tool from scratch. 
The maturity of GenSet is between that of Gretel and the two “proof of concept” 
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prototypes. We have achieved performance much better than the most similar competing 
tool (Grok, which is based on relational algebra rather than flow analysis), while 
increasing expressiveness. Some work on packaging remains to be done before a wide 
public release, and we believe there are years of productive work ahead on applications 
and extensions. 
 

3 Technical details 
 
Details of the sub-projects are best related through papers. We have attached a set of 
representative papers to this report. 
 

4 Discussion and Lessons Learned 
 
A variety of technical lessons have been learned on the various sub-projects, but many of 
them come down to a single rule of thumb: Any technology that will successfully scale 
for use in complex, evolving software systems must necessarily be usable on small pieces 
of a system in isolation. Gretel has succeeded partly because, even though it constructs 
some global data structures, it can be applied equally well to a full system, parts of a 
system, or a single Java source file. GenSet is explicitly designed to make use of 
whatever information can be extracted from designs and implementation, however 
incomplete. Our work on object protocol specifications treats individual 
superclass/subclass and client/server pairs individually, and for this reason can be very 
efficient despite the fact that the algorithm used for conformance checking is inherently 
exponential in the worst case. Our work on redesign for analysis, on the other hand, was 
conceived initially as a “top down” approach in which one began with an overall view 
extracted from a design or implementation, and this will be an obstacle to scaling it up 
until we can devise a version of the approach that is more local and incremental. The 
original vision for the Perpetual Testing project included integration with a variety of 
related projects, not only with our direct collaborators at University of California at Irvine 
and the University of Massachusetts. but also with other EDCS projects producing 
architecture description languages, hypertext presentations of software, and a variety of 
other technology. A good deal of energy was invested at EDCS meetings trying to define 
a shared vision and coordination, but in the end orchestration of such a grand scheme was 
probably doomed — no project, including ours, could afford to put a large number of 
other risky projects on their critical development path. But while the grand vision of our 
technology integrated into a seamless whole with other EDCS technology did not come 
to pass, it was still quite useful to interact with several other projects with related goals, 
particularly when visions of how to reach those goals differed. Much was accomplished, 
in spite of or perhaps even because there was, in the end, no unified vision across 
projects, but rather a creative tension of many visions. 
 
Our work on Perpetual Testing led, after further development through the DASADA 
program, to what we believe was a very promising plan for a technology evaluation 
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experiment on a major, real-world military application (AWACS), in collaboration with 
the commercial developer of that application. Unfortunately we have learned that the 
program to which that project was proposed has been canceled. We are very disappointed 
that we will not be able to test and demonstrate the results of our research effort in this 
manner. On the other hand, the burgeoning open source software movement opens other 
avenues for practical impact and “in vivo” evaluation. We have already released the 
Gretel residual test coverage monitoring tool as an open source tool on SourceForge, 
where it has spawned two new projects (Hansel and GretAnt) being carried forward by 
others building on our work; this is in addition to the Georgia Tech research project 
mentioned above. We expect to release GenSet in a similar manner. 
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ABSTRACT 
Structural coverage criteria are often used as an indica- 
tor of the thoroughness of testing, but complete satisfac- 
tion of a criterion is seldom achieved. When a software 
product is released with less than 100% coverage, testers 
are explicitly or implicitly assuming that executions sat- 
isfying the remaining test obligations (the residue) are 
either infeasible or occur so rarely that they have neg- 
ligible impact on quality. Violation of this assumption 
indicates shortcomings in the testing process. 

Monitoring in the deployed environment, even in the 
beta test phase, is typically limited to error and sanity 
checks. Monitoring the residue of test coverage in ac- 
tual use can provide additional useful information, but 
it is unlikely to be accepted by users unless its perfor- 
mance impact is very small. Experience with a proto- 
type tool for residual test coverage monitoring of Java 
programs suggests that, at least for statement coverage, 
the simple strategy of removing all probes except those 
corresponding to the residue of coverage testing reduces 
execution overhead to acceptably low levels. 

Keywords 
Testing, coverage, instrumentation. 

1 INTRODUCTION 
Quality assurance activities in the development environ- 
ment, including systematic dynamic testing, cannot be 
performed exhaustively, therefore they always depend 
on models. Static analysis depends on the fidelity of 
models extracted for analysis. Statistical testing for re- 
liability estimation depends on models of program us- 
age. Partition testing depends on the models used to di- 
vide program behaviors into classes that should be “cov- 
ered.” Discrepancies between these models and actual 
program behavior are valuable information, even when 
they don’t result in observed program failures, because 
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they indicate how quality assurance activities in the de- 
velopment environment can be improved. For example, 
having some way of judging when “enough” testing has 
been done can be valuable in a negative sense. Test ad- 
equacy criteria indicate, not when testing is definitely 
adequate, but when there is evidence’that a set of tests 
is inadequate because some significant class of program 
behaviors has never been tested. 

The family of structural coverage criteria (statement 
coverage, branch coverage, dataflow coverage, etc.) are 
based on syntactic models of program control and data 
flow. These syntactic models are conservative in the 
sense that they include not only all control and data 
flows that will occur in any execution, but also many 
infeasible paths that can never occur.’ It is (provably) 
impossible to determine exactly which paths are infea- 
sible. Thus even exhaustive testing would often fail to 
satisfy structural coverage criteria.l When a software 
product is released without 100% coverage, testers are 
explicitly or implicitly assuming that the remaining test 
obligations (the residue) is either infeasible, or occurs in 
a vanishingly small set of possible executions. 

We cannot completely avoid models and assumptions. 
What we can do is validate the models wti use. If we 
have implicitly or explicitly assumed that a particular 
path or region in code is never, or almost never exe- 
cuted, then knowing that an execution of that path or 
region has occurred in actual use is valuable informa- 
tion, even if the software performed correctly in that 
case. However, in current practice this is not possible 
since there is a sharp divide between unit, integration, 
and system testing on the one hand, and feedback from 
deployed software on the other. While developers have 
access to a variety of monitoring tools in the develop- 
ment environment, monitoring in the deployed environ- 
ment is typically limited to error and sanity checks, and 
the channel from users back to developers is just a list 
of trouble reports. Residual test coverage monitoring 
exploits the opportunity provided by increasingly ubiq- 

lFrank1 [5] has defined variant criteria relative to feasible 
paths, but practically speaking that does not’ change the prob- 
lem considered here. 
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uitous networking to enrich the feedback channel and 
validate one kind of model used in the development en- 
vironment. 

The remainder of this paper is organized as follows: 
Section 2 discusses potential objections to residual test 
coverage monitoring and motivates investigation of the 
problem of performance impacts. Section 3 sketches the 
design of a prototype tool constructed to evaluate a sim- 
ple approach to minimizing performance impacts in the 
deployed environment, and Section 4 reports measure- 
ments obtained with the tool. Sections 5 discusses re- 
lated work and open issues, and Section 6 concludes. 

2 RESIDUAL TEST COVERAGE MONI- 
TORING 

The purpose of residual test coverage monitoring is to 
provide richer feedback from actual use of deployed soft- 
ware to developers, helping developers validate and re- 
fine the models they have relied upon in quality assur- 
ance. To be successful, run-time monitoring must over- 
come at least two classes of potential objections from 
users. 

The first class of potential objections is related to secu- 
rity, confidentiality, and privacy. There is probably no 
complete solution to the confidentiality problem since 
the most innocuous seeming communications to devel- 
opers could convey confidential information gathered 
from users.2 Communication of any information from 
actual use will be unacceptable to some users and in 
some application domains. This class of objections can 
be partially avoided by targeting the beta test phase, 
in which users are already used to providing some infor- 
mation to developers, and by limiting communication to 
forms that are observable and controllable by the end- 
user (for example small textual e-mail messages that the 
user can inspect before sending). 

The second class of potential objections is related to per- 
formance, including degradation of responsiveness and 
perturbation of real-time behavior. Sensitivity to per- 
formance concerns differs widely among different classes 
of software, and there will be some applications in which 
no run-time monitoring is acceptable. On the other 
hand, we believe there is a large class of applications 
in which some very modest performance degradation is 
acceptable, particularly in the beta test phase. 

In the longer term, we believe it will be useful to pro- 
vide deployed software with adjustable levels and focus 
to address performance requirements with user control 
to address concerns of security, and confidentiality. One 

‘In standard terminology, this information is a potential covert 
channel. The basic block information described in the following 
sections can be used as a covert channel by including tests of of 
confidential information in the application, so that execution of a 
particular block indicates the outcome of the test. 
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can easily imagine uses for very detailed monitoring, 
sufficient to completely reproduce an unanticipated be- 
havior, and there are no doubt situations in which the 
inevitable overhead of such detailed monitoring would 
be acceptable. However, we have chosen to concentrate 
initially on the other end of the spectrum, establishing 
that some useful information can be gathered. even when 
the tolerance for performance degradation is small. 

The prototype tool described in the following sections 
of this paper selectively monitors execution of Java pro- 
grams for a simple test coverage criterion, equivalent to 
statement coverage. Initially, all basic blocks are mon- 
itored, but subsequent to a few test runs the program 
can be instrumented again, removing monitoring of ba- 
sic blocks that have already been covered and leaving 
only the probes needed to recognize execution of the 
“residue” of unexecuted code. Since the high-frequency 
program paths tend to be executed on almost every pro- 
gram run, the cost of selective reinstrumentation quickly 
decreases. For the programs we have tested, after a few 
iterations of testing and reinstrumentation the run-time 
overhead of execution monitoring becomes insignificant. 

3 A RESIDUAL COVERAGE TOOL FOR 
JAVA 

We have implemented a simple residual test coverage 
monitoring tool for Java applications and applets. The 
prototype tool provides a record of which basic blocks 
(hence which statements) have been executed at least 
once in a series of test runs. An XEmacs library pro- 
vides a way to view cumulative coverage graphically, 
by highlighting regions of code that have not been ex- 
ecuted. This section sketches the overall design of the 
tool and a few details of its implementation; full de- 
tails can be found in the M.S. thesis of the first author 
[13]. Except for the choice of object code instrumen- 
tation, which is specific to Java, the design should be 
equally applicable to traditionally compiled procedural 
and object-oriented languages. 

Overall process 
Figure 1 illustrates the overall process of program in- 
strumentation and coverage monitoring. An object code 
instrumenter places instrumentation in the program, re- 
ferring to a cumulative coverage table to place probes 
only on the as-yet unexecuted “residue.” Initially noth- 
ing has been covered, so a probe is placed in every basic 
block of the program. The instrumented class files are 
executed by an (unmodified) Java interpreter, and as a 
side effect the instrumentation creates a file recording 
which basic blocks were executed. After one or several 
test runs, the instrumenter is invoked again to place 
probes only in the blocks that remain unexecuted. 

Key structures 
As one would expect, the prototype tool is designed to 
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\ 
J&W.3 
Interpreter 

Figure 1: Instrumentation process: in every iteration the basic blocks that were not covered in previous executions 
are instrumented and the new class file is executed in order to collect coverage information. 

minimize execution time overhead by moving as much 
computation as possible to the instrumentation and 
post-processing phases. Residual test coverage moni- 
toring provides one extra opportunity for optimization, 
compared to conventional coverage monitoring: Since 
the number of blocks monitored may be far fewer than 
the number of blocks in the program, we can use smaller 
keys to index blocks at run time. This introduces an 
extra level of indirection in the auxillary tables which 
are produced at instrumentation time and interpreted 
in post-processing. 

The key data structures are: 

l An Id Table which associates a unique identifier 
(block id) with each basic block in a program. The 
Id Table must be stable in the sense that, if the 
same program is compiled twice without changes, 
the same unique identifiers are associated with each 
basic block. 

l A Coverage Table recording the basic blocks (ele- 
ments of the Id Table) that have been covered in 
previous executions; this corresponds to the cumu- 
lative coverage table in Figure 1. It could be a 
simple list of block identifiers or, as in our imple- 
mentation, an array of booleans indexed by block 
id. 

l A Correspondence Table that associates integers 
(hit keys) with block ids. Hit keys are integers in 
the range 0.. . n, where n is the number of basic 
blocks that have not been covered when the instru- 
menter is run. When n is small, a more efficient 
code sequence can be used for each run-time probe. 
The instrumenter creates a new set of hit keys each 
time the program is reinstrumented, and creates 

Hit table 

Source code 

Block Ids--....-.. -------.--- 

I- 
ID Table: block id + basic block 
(stable) 

korrespondence: hit key + block id 
(changes at each re-instrumentation) 

Figure 2: Tables for maintaining the information needed 
for selective monitoring 

the correspondence table so that a post-processor 
can update the coverage table from a smaller table 
of hit keys. 

l When an instrumented program is executed, a Hit- 
Table indexed by hit keys is maintained. The hit 
table is a simple array of booleans, initially all false. 
HitTable [i] will be set to true when the i-th basic 
block has been executed. 

The relation among the various tables appears in Fig- 
ure 2. 

Execution of a probe at run time causes a single boolean 
to be set in the hit table. The table is dumped to a 

279 

7



file at the end of execution, and a post-processor up- 
dates the coverage table correspondingly. In the case 
of deployed software, the usual case would be an empty 
hit table,, and the writing and post-processing phases 
could be skipped except in the exceptional cases when 
an untested region of code has been executed; the post- 
processing phase would also take place in the develop- 
ment environment rather than the field environment. In 
our prototype, however, we simply dump and process 
the hit table after every run. 

Object Code Instrumentation 
While the structures and processing described above 
should apply to most procedural and object-oriented 
languages, the strategy we chose for instrumenting pro- 
grams was strongly influenced by the target language. 
Java programs and applets are typically compiled to 
a byte-code format and interpreted by a byte-code in- 
terpreter called Java virtual machine [lo]. For other 
languages, an instrumenter based on source-to-source 
translation or modification of an existing compiler might 
have been a better choice, but for Java we found direct 
instrumentation of object code (class files) more attrac- 
tive. 

Java byte code is stack-oriented, whereas the instruction 
set architectures of the dominant contemporary proces- 
sors are register-oriented. The only practical way to 
insert instrumentation that affects register allocation is 
to insert the instrumentation at the level of source or 
intermediate code, leaving adjustment of the register 
allocation to the compiler back end. In contrast, it is 
relatively easy to insert a few stack-oriented instructions 
in a stack-oriented instruction stream, leaving the stack 
unchanged. Equally important is what is not possible 
in stack-oriented code: In a machine with a generous 
set of registers, it is worthwhile to work very hard at 
minimizing the number of memory accesses by making 
clever use of registers (e.g., as in the path profiling tech- 
nique of Ball and Larus [2]), but stack code presents no 
such temptation. 

At a more pragmatic level, we had access to standard 
Java packages for reading, interpreting, and writing 
Java class files, which greatly reduced the effort re- 
quired to produce an object-code instrumenter. It is 
relatively simple to extract control structure and other 
information from the assembly-language level of infor- 
mation provided by these Java packages, and the files 
also contain debugging information that served our need 
for associating regions of object code with regions in the 
source files. 

Basic blocks are identified in the byte codes using stan- 
dard algorithms [20]. At the head of each basic block 
that has not previously been executed we insert a call 
to Monitor. hit (hit-key), a method that stores one 

value in a boolean array. If the hit key is less than 256, 
the code is 

bipush hit-key 
invokestatic #index 

where index is the location of the address of method 
Monitor. hit (int> in the constant pool. Class Monitor 
is the run-time library which encapsulates the hit table 
and provides initialization and finalization. Directly ac- 
cessing the array might be faster than a method call, 
but would require more inline code. 

In Java, every class is allowed to have a “main” method, 
and the user can begin execution from any class, so 
we simply instrument the main methods of all classes. 
This simple expedient was adequate for our purposes, al- 
though obviously inappropriate for a product.ion-quality 
tool. 

Producing valid bytecode 
Instrumentation must be inserted in such a way that 
the Java Virtual Machine Specification is not violated. 
The Java interpreter checks each class file to deter- 
mine that it it conforms to the format dictated by 
the virtual machine specification and that appropri- 
ately typed arguments are on the top of the stack 
when needed. The stack-typing requirement is easily 
met, since the inserted instrumentation has no net ef- 
fect on the stack contents (it pushes and then con- 
sumes one argument), but the maximum stack depth 
of each method must be incremented by four to acco- 
modate the added instructions. Method calls in Java are 
made by indirection through a table of constants (recall 
the invokestatic #index instruction in the sample 
code above), so entries for the instrumentation meth- 
ods must also be added to the constant pool of each 
instrumented class. In addition, the target addresses 
of control transfer instructions and the exception table 
must be adjusted. Target addresses of lookupswitch 
and tableswitch must also be adjusted and, in some 
cases, aligned by inserting zero bytes. 

Multi-threading 
Java programs typically have multiple concurrent 
threads of control. Execution of a coverage probe at 
run-time is simple and does not require mutual exclu- 
sion, on, the fairly conservative assumption. that con- 
current stores of the same boolean value to a memory 
location will result in that value being stored. The only 
real issues we encountered were in ensuring proper ini- 
tialization and finalization (dumping to a file) of the 
run-time table. 

Multithreaded programs can be applets or programs 
that use threads or graphics. In the case of applets, 
execution of the program begins from the constructor 
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of the applet and ends at the destroy method. Thus, 
unlike single-threaded programs, we do not need to in- 
strument the main method. While applets are designed 
primarily for execution in web browsers, we executed 
them in the appletviewer application to relax the usual 
web browser security restriction against writing to a file. 

The case of multithreaded Java applications which are 
not applets is more difficult. The beginning of execu- 
tion is easy to recognize (execution begins at the main 
method of some class), but termination can occur in dif- 
ferent places; basically whenever there is a system call to 
exit the program. In multithreaded testcases the call to 
dump the file with execution information was inserted 
manually before the approriate system calls. 

4 EXPERIENCE 
We have measured the performance impact of residual 
test coverage monitoring on four applications ranging 
in size from 55 to 4000 lines. The experiments were 
conducted in a SPARC 5 processor at 70 MHz, run- 
ning the Solaris operating system. Two of the applica- 
tions, ArcTest and Sorting, are an applet and applica- 
tion taken from the examples distributed with the Sun 
Java Development Kit (JDK), version 1.0. The other 
two are Java applications that were developed in our 
laboratory, the larger of these being the residual in- 
strumentation tool itself. In general, no changes were 
needed in the code to execute the different test cases, 
except for minor changes to catch the beginning and 
ending of execution in multithreaded programs as dis- 
cussed in the previous section. Java applications were 
executed by the Java interpreter provided in the JDK, 
and Java applets were executed in the appletviewer ap- 
plication provided in the JDK. 

We observed generally that while the execution of a fully 
instrumented program may have significant overhead, 
after a few iterations of test execution and reinstrumen- 
tation the overhead reduces dramatically. The addi- 
tional execution time required for the instrumentation 
statements of a program depends mainly on the size 
and number of loops as well as on the size of the input 
data. In practice one would reinstrument only after sev- 
eral test executions, but for measurement purposes we 
reinstrumented after processing each test case. 

The execution time (elapsed wall time) of each test pro- 
gram was measured with the Java system service for 
time measurement. The execution times in the tables 
below are averages over ten runs, rounded to the nearest 
0.1 second. The first row of each table contains the ex- 
ecution times of the uninstrumented application for dif- 
ferent data inputs. The execution times for the instru- 
mented program (second row in the tables) were mea- 
sured as follows: initially instrumentation is inserted in 
every basic block and the program is executed (10 times) 

I test 1 I 
original 4.5 

instrumented 5.0 
# blocks instrumented 29 

Table 1: ArcTest execution times in seconds and num- 
ber of blocks executed 

with the first test case (time in first column); then the 
program is reinstrumented, placing probes inserted in 
those basic blocks that did not execute previously and 
the program is run with the second test case (time in 
second column); the process is repeated for all test cases. 
The last row of each table contains the number of basic 
blocks that were instrumented for each test case. 

The first program, ArcTest, is a simple applet of ap- 
proximately 80 lines that draws on the screen a number 
of arcs with random beginning and end. In this case the 
overhead even from complete instrumentation is small 
relative to the cost of the graphics operations. Rein- 
strumentation was not performed on this example; we 
include it here for comparison because it is the only ap- 
plet in this group of programs. 

The Sorting program (55 lines) sorts an array of ran- 
domly generated numbers using either binary or quick 
sort. The first test case is sorting numbers with bi- 
nary sort, the second test case is sorting numbers with 
quicksort and the third is sorting numbers with quick- 
sort again. In the program distributed with the JDK, 
run times vary considerably depending on the sorting 
algorithm; we made them comparable by increasing the 
size of the arrays for the faster algorithms, to make the 
trend in instrumentation overhead easier to see in the 
tables (we have also measured the program without this 
modification, with similar results). In the first test, the 
instrumentation overhead is nearly 130%. In the second 
test, which executes a different sorting algorithm and 
therefore mostly in a different region of code, overhead 
remains very high at nearly 160%. The third test case 
uses the same sorting algorithm as the.first, and there- 
fore executes in the same region of code. In this case 
no probes are executed, and the program with residual 
instrumentation executes in essentially the same time 
as the uninstrumented program. 

. 

Elevator (650 lines) is a simulation program for the op- 
eration of two elevators. Unlike the sorting algorithm, 
it does not consist primarily of tight loops, so even 
the overhead of complete instrumentation is only about 
15%. After two iterations of testing and reinstrumenta- 
tion the overhead is reduced to 1.5%. 

Finally, the instrumentation system itself (approx. 4000 
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Table 2: Sorting execution times in seconds and number 
of blocks instrumented 

f I , 

# blocks instrumented 1 323 1 240 1 119 

Table 3: Elevator execution times in seconds and num- 
ber of blocks executed 

lines) has been instrumented and has been used to in- 
strument the program Sorting. The execution over- 
head of full instrumentation is approximately 9.3%. Af- 
ter two iterations of testing and reinstrumentation, the 
overhead of residual coverage monitoring falls below the 
level that we were able to measure. 

5 DISCUSSION 
Related work 
We are not aware of prior attempts to gather struc- 
tural test coverage information from deployed software, 
although Cusamano and Selby report that Microsoft 
gathers detailed use profiles from specially instrumented 
versions of its products [3, pp. 377-3781. 

One class of “residual” monitoring that is already com- 
mon, though, is run-time checks of assertions. As with 
coverage monitoring, tolerance of run-time overheads for 
assertion checking differs between the development en- 
vironment and the deployed environment. For example, 
evaluating a quantifier by enumerating elements of a 
finite set may be acceptable when testing software in 
the development environment, but unacceptable for de- 
ployed software. Some assertion checking systems rule 
out very expensive predicates entirely (ADL [19] takes 
this approach), while others like Gnu Nana [12] provide 
flexible ways to deactivate some checks while leaving 

test 1 test 2 test 3 
original 4.3 1.7 4.4 

instrumented 4.7 1.8 4.4 
# blocks instrumented 1000 614 547 

Table 4: Instrumentation program execution times in 
seconds and number of blocks executed 

others active. The Anna project [ll, 181 is the root of 
much of the recent research in enriching run-time checks 
[16, 17, 191. 

Instrumentation for cheap run-time coverage monitor- 
ing has obvious relations to cheap instrumentation for 
other purposes, including performance profiling. Cov- 
erage monitoring requires less information than perfor- 
mance profiling, since the latter does not distinguish 
whether code is executed once or one thousand times, 
and this makes the design of cheap coverage monitor- 
ing considerably simpler than cheap performance pro- 
filing. Agrawal has shown that the number of program 
probes needed for basic block coverage monitoring can 
be reduced considerably by using control flow analysis 
(pre- and post-dominator information) [l]. The rela- 
tive savings in the cost of residual coverage monitoring 
over full monitoring would be correspondingly reduced 
if Agrawal’s technique were applied, and vice versa the 
savings from Agrawal’s technique would be less signif- 
icant if applied to residual coverage obligations after a 
few tests. Nonetheless it may be be useful to combine 
the techniques, not so much to achieve further reduc- 
tions in execution time overheads as to reduce space 
overheads, which residual coverage monitoring is less 
effective at reducing. 

The object code instrumentation approach discussed in 
Section 3 is related to a variety of tools for instru- 
menting binary machine code [7, 21, 6, 151. Among 
tools suited for instrumenting Java byte codes, the most 
closely related is Lee’s Bytecode Instrumenting Tool 
(BIT) 18, gl), h’ h w ic was developed contemporaneously 
but independently. BIT is more general than our tool, 
providing a way to insert method calls in user class 
files. In principle, a tool like our residual test cover- 
age monitor could be more simply constructed using a 
tool like BIT, but several current limitations of BIT pre- 
vent us from using it in that way. BIT allows the user 
to specify the instrumentation statements, but it does 
not provide the capability of removing monitoring code 
automatically, nor does it maintain the links we require 
between source code and bytecode locations. Moreover, 
BIT does not (yet) properly adjust exception handling 
code to account for instruction relocation. 

Open Issues and Future Work 
As stated earlier, our tactic in exploring residual test- 
ing is to first establish that some useful information can 
be gathered even when the tolerance for performance 
degradation is small before moving on to gather richer 
and potentially costlier information. We have so far in- 
vestigated residual monitoring of only the simplest test 
coverage criterion, albeit the one most used in practice. 

Many of the more stringent test coverage criteria involve 
sub-paths in program control flow, rather than individ- 
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ual points. The best known of these is data flow cover- 
age testing, in which execution of particular “definition 
use” pairs (what compiler writers know as “reaching 
definitions”) are monitored. The interested reader may 
refer to [14] for definitions and an in-depth discussion 
of data flow testing. 

It is not clear whether the run-time performance im- 
pact of residual test coverage monitoring can be made 
insignificant for data flow coverage and other path-based 
coverage criteria. In the worst case we might have code 
like the following: 

if (condl) 
x = . . . . // 1 

else 
y = . . . . // 2 

if (cond2) 
2 = x; // 3 

else 
z = y; // 4 

with the assumptions that 

a the code occurs in a high frequency loop, 

l in each of the two “if” statements, the “then” 
branch is taken 50% of the time and the “else” 
branch is taken 50% of time, 

l when the “then” branch is taken in the first “if” 
statement, the “else” branch is always taken in the 
second, and when the “else” branch is taken in the 
first “if” statement, the “then” branch is always 
taken in the second. 

We observe that the definition-use pairs (1,3) and (2,4) 
are never executed, even though every point in the path 
is executed 50% of the time. In this case, unless we 
transform the code, we cannot avoid monitoring at a 
point that is executing on 50% of the loop iterations. In 
some cases (including the example above) such code can 
be transformed to separate frequently and infrequently 
executed paths, but such transformations are expensive 
in space. Empirical evidence is needed to determine how 
often such pathological cases occur in real programs. 

Notification that a user has executed code in a way that 
was not adequately tested leaves to testers the task of 
determining how to reproduce a behavior that they have 
not previously encountered in testing. Even the limited 
information provided by our current tool should be use- 
ful in focusing effort on the presumably small number 
of reported blocks rather than the whole population of 
uncovered blocks, but it would be more useful to have 
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additional information such as input data, intermediate 
data values, or parts of the execution path leading to 
the newly exercised code. In case testers cannot easily 
reproduce the behavior, it would be possible to pro- 
vide selected users with versions of the application that 
are specially instrumented to provide more information 
about the ,particular behaviors of interest, 

Security and confidentiality concerns may be more diffl- 
cult to overcome than the performance issues that would 
result from providing additional information to develop- 
ers. As noted earlier, seemingly innocuous information 
communicated from the users’ environment to develop- 
ers is a potential covert channel which could be used by 
an unscrupulous developer to obtain confidential infor- 
mation. Increasing the amount of information commu- 
nicated exacerbates potential security and confidential- 
ity concerns. Even a user who is willing to trust that 
developers are not encoding confidential information in 
coverage records may balk at providing input data from 
actual executions. 

6 CONCLUSIONS 
We have argued for monitoring of deployed software, 
particularly in beta testing, that goes beyond correct- 
ness checks to provide validation of the models used dur- 
ing quality assurance. In particular, we have described 
how monitoring of the “residue” of test coverage criteria 
could be used to validate the thoroughness of testing in 
the development environment. 

A prototype system that implements residual test cov- 
erage monitoring has been presented. The system mon- 
itors a simple (but widely used) test coverage criterion, 
statement coverage. By selectively reinstrumenting a 
program under test to monitor only the coverage obli- 
gations that remain unmet, it can dramatically reduce 
the cost of continued monitoring of programs that have 
been through development test. Performance measure- 
ments made with this tool suggest that the performance 
impact of residual test coverage monitoring may be low 
enough to be acceptable in at least some kinds of actual 
use, such as the beta test phase. We view the simplicity 
of the approach as a particular virtue. 

Only the performance aspect of residual test coverage 
monitoring has been investigated so far. We have par- 
tially side-stepped issues of privacy and security by con- 
sidering monitoring in the beta test phase of software 
deployment, but more sophisticated approaches to these 
issues as well as the actual communication between 
users and developers deserve attention. Additionally, 
approaches to minimizing the performance impact of 
residual path-oriented coverage monitoring remain to be 
investigated; the prototype tool described here will be 
useful in gathering empirical data to evaluate possible 
approaches. 
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ABSTRACT 
We describe an extension to the Java programming language that 
supports static conformance checking and dynamic debugging of 
object "protocols," i.e., sequencing constraints on the order in which 
methods may be called. Our Java protocols have a statically check- 
able subset embedded in richer descriptions that can be checked at 
run time. The statically checkable subtype conformance relation 
is based on Nierstrasz' proposal for regular (finite-state) process 
types, and is also very close to the conformance relation for archi- 
tectural connectors in the Wright architectural description language 
by Allen and Garlan. Richer sequencing properties, which cannot 
be expressed by regular types alone, can be specified and checked 
at run time by associating predicates with object states. We de- 
scribe the language extensions and their rationale, and the design 
of tool support for static and dynamic checking and debugging. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging---debug- 
ging aids, tracing; D.2.4 [Software Engineering]: Software/Pro- 
gram Verification---assertion checkers; D.3.3 [Programming Lan- 
guages]: Language Constructs and Features---classes and objects 

General Terms 
Debugging, protocols, sequencing constraints 

1. INTRODUCTION 
A repeated pattern in the history of software engineering research is 
development of underlying principles for specifying certain proper- 
ties, then development of specification formalisms and automated 
checks for some part of those properties, and then migration of 
some efficiently checkable part of those specifications to program- 
ming languages. This pattern can be seen in abstract data types, 
eventually (but only partially) realized in module and class con- 
structs of modern languages, and in module interconnection spec- 
ifications which likewise were developed first as extrinsic speci- 
fications but are now at least partly internalized in the "package" 
constructs of Java and Ada. Since there is a long thread of research 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advan- 
tage and that copies bear this notice and the full citation on the first page. 
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in specifying the sequences of operations accepted at module in- 
terfaces [9], and more recently development of extrinsic specifi- 
cations of operation sequence protocols in architecture description 
languages [2, 3, 12] as well as the StateChart part of UML [4, 18], it 
is natural to consider whether and to what extent such protocols can 
be incorporated directly into programming languages and checked 
routinely as a part of normal compilation. Recent research in pro- 
gramming language design and semantics has greatly widened the 
class of interface properties that can be captured as part of type 
compatibility, and Nierstrasz has shown in principle how operation 
sequencing can be treated in a type system [13], but to date inves- 
tigations of protocols as object types have been limited to pencil- 
and-paper exercises. In this paper, we describe an extension to the 
Java programming language which supports static protocol confor- 
mance checking and dynamic checking of compatibility between 
actual and declared behavior. The main innovation of the current 
work is in the way the statically-checkable conformance relation 
is embedded in a richer formalism for describing sequencing con- 
straints and combined with dynamic checking of behavior. We have 
implemented the static checking as an extension to the compiler of 
Sun Microsystem's Java Development Kit, Release 1.1.7, and are 
close to completion of the implementation of the support for dy- 
namic checking. 

1.1 Protocols as Part of Types 
The interface specifications described here combine concepts of 
access-right expressions, originally described by Kieburtz and Sil- 
berschatz [9] with the regular object types of Nierstrasz [13]. They 
are interface specifications, distinct and independent from mecha- 
nisms used to implement the synchronization for enforcing a par- 
ticular pattern of operations, such as path expressions [5]. Simi- 
lar to Liskov and Wing's notion of behavioral subtyping [11], we 
extend the subtype relationship with behavioral information. In- 
terface specifications are related to architectural description lan- 
guages (ADLs) such as Wright [2, 3] and Darwin [12]. But while 
ADLs are language independent and capture higher-level architec- 
tural structures, our interface specifications are language specific, 
which allows some static checking and enables the compiler to gen- 
erate code for dynamic monitoring. Our approach is partly based 
on Nierstrasz' regular types for active objects [13]. Similar for- 
mal models have been developed for concurrent objects with asyn- 
chronous message passing [16]. We adapted Nierstrasz' work to 
specifying and type-checking object protocols in Java. Further- 
more, we extended the specification of protocols to allow dynamic 
checks of the actual behavior. 

The type or interface of a class specifies a set of operations or meth- 
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ods provided by a class. Often these methods can be called only in 
a particular order, but the order is not part of the interface and can- 
not be checked by a Java compiler. (The situation is similar for 
other strongly-typed, object-oriented languages.) The well-known 
benefits of static type checking are thus available for such proper- 
ties as the number and order of arguments to each method, but not 
for the sequencing of method calls. Protocols add this sequencing 
information to class and interface declarations and allow a compiler 
to check whether the declared intent of an object making method 
calls is compatible with the sequences supported by the object be- 
ing called. 

An extension of Ada that employs behavioral subtyping and is sim- 
ilar in some ways to our approach has been proposed by Puntigam 
[17]. Our approach differs in two fundamental ways: First, we 
treat a protocol as a contract between individual objects, whereas 
Puntigam's behavioral types specify what a set of objects may do 
collectively. Second, Puntigam's proposal is for static verification 
of actual behavior through program analysis; our more modest and, 
we think, more practical approach combines static verification of 
declarations with dynamic checking of actual behavior. In addition, 
our protocol specifications are somewhat more expressive, support- 
ing non-determinism that cannot be expressed in Puntigam's behav- 
ior specifications. 

1.2 Debugging Support for Protocols 
Since compile-time checks are limited to checking regular (finite- 
state) specifications and are not, in general, capable of determining 
whether actual run-time behavior is consistent with these declara- 
tions of intent, additional checking is necessary at run time. To 
allow this run-time checking, the compiler instruments the gener- 
ated code such that the run-time behavior is communicated to a 
debugging tool that compares the dynamic behavior with the de- 
clared behavior and either logs protocol violations or generates run- 
time errors. For checking the method call sequence, the debugging 
tool employs a labeled transition system, in which each method 
call triggers a state transition. After each state transition predicates 
can be evaluated to check the consistency between actual behavior 
and declared intent. Also, the debugging tool provides support for 
checking whether a labeled transition system is in a final state. 

2. LANGUAGE DESIGN 
2.1 Formulation of the Problem 
Assume we are given a class R andomAcc  e s  s implementing some 
interfaces DataOutput and DataInput. 

class RandomAccess 
implements DataOutput, DataInput { 

// ... 

) 

Now assume that a client of class RandomAccess contains the 
following piece of code. 

/ /  . . .  

DataInput file = new RandomAccess(); 
file.open(); 
x = file.read(); 
file.close(); 
y = file.read(); 
// ... 

This code will compile without errors or warnings. However, it is 
clearly not what was meant by the author of class R a n d o r a k c c e s  s 
A client should not read from a file after it has been closed. What 
is missing in the source code is a description of the order in which 
the methods of a class or an interface must be called. 

2.2 Protocol Declarations 
We introduce a new language construct 1 , a protocol declaration, or, 
briefly, a protocol. A protocol declaration can appear in an interface 
or in a class. Syntactically, a protocol is introduced by the keyword 
" p r o t o c o l "  and contains a block of protocol statements. (We 
are using double quotes to denote literals and symbols.) Unlike 
methods, classes, and interfaces, a protocol does not have a name 
but is associated with its enclosing class or interface. 

In the simplest case, a protocol contains just a single regular expres- 
sion over the alphabet of all public method names. For the interface 
D a t a I n p u t  the protocol might be: 

interface DataInput { 
protocol { open, read*, close; } 
// ... 

} 

This means that an object of a class that implements this interface is 
allowed to call the method o p e n  once, then call the method r e a d  
zero or more times, and then call the method c l o s e  before being 
destroyed (garbage-collected). 

A reasonable protocol for the class R a n d o r o A c c e s s  would be the 
following: 

class RandomAccess 
implements Data0utput, DataInput { 

protocol ( open, (readlwrite)*, close; } 
// ... 

} 

The latter protocol allows more functionality than the former. We 
say that the protocol of class R a n d o m k c c e s s  conforms to that of 
interface D a t a l n p u t .  An object X conforms to an object Y,  if  
X is request substitutable for Y. I.e., if a client of Y expects Y to 
accept a sequence of requests s, and we substitute X for Y, then X 
will accept the same sequence s. (A more formal definition of the 
notion of conformance will be given later, when we describe more 
general types of protocols.) 

The conformance relation is a partial ordering among types. It has 
to be consistent with the subtype relation, i.e., if a class or interface 
X is a subtype of another class or interface Y, then the protocol 
of X must conform to the protocol of Y. Otherwise, the compiler 
should generate an error. If an interface or class X has no protocol 
declaration, the default protocol is a s sumed- -  i.e., methods of such 
a class can be called in any order. Such a protocol represents a 
minimal element with respect to our conformance relation, i.e., it 
conforms to any other protocol. If  we use the symbol -< to mean 
"conforms to," then we have: 

Default ~< RandomAccess -< DataInput 

i ln the initial version we chose to extend the syntax directly. A 
future version may encapsulate the construct in a formal JavaDoc 
comment, as done in iContract [10]. 
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push 

pop 

=(Re~ push, pop 

Figure 1: The LTS for interface Stack 

where De f a u 1 t denotes a default protocol. 

Can the allowed sequences of operations always be expressed as 
a single regular expression? The following example shows that, 
unfortunately, this is not possible. Consider a simple interface for 
a stack. 

interface Stack { 
public void push(int i); 
public int pop(); 

) 

We would like to write a protocol for this class that would allow se- 
quences of requests such as ( p u s h ,  p o p )  or ( p u s h ,  p u s h ,  
p o p ) ,  but would disallow, for example, the sequences of  requests 
( pop )  or ( p u s h ,  p o p ,  p o p ) .  A regular expression or a de- 

terministic finite automaton (DFA) cannot do that since it cannot 
keep track of the number of elements on the stack. Other finite-state 
specifications share the same fundamental limitation in expressive- 
ness. Thus, we would need a richer language, such as a context- 
free grammar. The conformance check for context-free languages, 
however, is undecidable, which makes it unsuitable for use in the 
type system of a programming language. Following the idea intro- 
duced by Nierstrasz [13], we use a labeled transition system (LTS) 
over the alphabet of  all public methods of a class or interface to 
describe the protocols, which, in general can be non-deterministic. 
This allows writing protocols that represent a reasonable approx- 
imation for possible object behaviors and, at the same time, are 
simple enough that the conformance check can be performed at 
compile time. 

Using this approach, we can write the protocol for the interface 
S t a c k  as follows: 

protocol ( 
start final state e; 
final state ne; 
<*> push <ne>; 
<ne> pop <*>; 

} 

Figure 1 shows the LTS defined by this protocol. Clearly, this 
protocol is only an approximation for the stack behavior. It dis- 
allows the sequence (pop)  but still allows the sequence ( p u s h ,  
p o p ,  p o p ) .  Internal non-determinism (as opposed to external 
non-determinism) is introduced as an artifact of modeling, i.e., de- 
terministic choices of the service are modeled as arbitrary choices. 
It is for this reason that the protocol must be modeled as a labeled 
transition system (LTS) with failure semantics, and not as a lan- 
guage acceptor in which non-determinism can be removed by trans- 
formation to a deterministic finite-state acceptor using the subset 
construction (see Section 2.8). Because internal non-determinism 
is an artifact of abstraction in the finite-state model and not a feature 
of  the actual system, these same internal choices are interpreted 
differently in run-time checks. Using these run-time checks, the 

sequence ( p u s h ,  p o p ,  p o p )  can be disallowed as well (see 
Section 2.9). 

A formal protocol syntax specification is given in Figure 2. Below, 
we outline its main features. Some details were intentionally left 
out for the sake of brevity. 

A protocol declaration consists of a series of protocol statements. 
Each protocol statement is either a state declaration, a regular ex- 
pression declaration, or a sequencing statement. 

2.3 State Declarations 
A state declaration declares one or more state identifiers that sub- 
sequently can be used in sequencing statements. Final states can 
be identified with the modifier " f i n a l  ". The start state can be 
identified with the modifier " s t a r t  ". Each state identifier is fol- 
lowed by an optional "="  sign followed by a boolean expression, 
which represents a state predicate. Its meaning will be explained 
later. There are two implicitly defined states - -  the default start 
state and the default final states that are represented by empty state 
expressions on the left side and on the right side, respectively, of  a 
sequencing statement. 

In the S t a c k  example above, we defined two states - -  e and n e  
(corresponding to empty and non-empty states of  the stack). Both 
states are final, which means that an object implementing this in- 
terface is allowed to be destroyed at every state. In the example of 
D a t a I n p u t  there are no explicitly defined states. 

2.4 Regular Expression Declarations 
A regular expression declaration defines one or more names for 
regular expressions. This might be thought of as a macro definition 
and might be useful when writing complex protocols. 

2.5 State Lists 
A state list is either the literal " * "  or a list of one or more identifiers 
separated by commas. The literal " * "  is interpreted as the list of  
all explicitly declared state identifiers. 

2.6 Sequencing Statements 
In the simplest case, a sequencing statement is just a regular ex- 
pression (as in the D a t a I n p u t  example). 

More generally, a sequencing statement consists of  an optional state 
list, followed by a regular expression over the alphabet of  public 
method names, another optional state list, and a semicolon. 

A sequencing statement defines state transition in the LTS defining 
the protocol. An individual regular expression describes a language 
of allowed sequences, and the appropriate semantics for this is lan- 
guage acceptance (also called trace semantics). There is no internal 
non-determinism, so we can use the standard subset construction 
[1, p. 117] to represent each individual regular sequencing state- 
ment as a deterministic acceptor, while still maintaining the failure 
semantics of the protocol LTS as a whole. 

If the left-hand side (LHS) and right-hand side (RHS) state lists 
specify only one state each, the start state of the DFA is the LHS 
state, and the final state of the DFA is the RHS state. An empty 
LHS represents the default start state. An empty RHS represents 
the default final state. If there are multiple LHS states, multiple 
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( ProtocolDeclaration > ::= 

(ProtocolStatement) ::= 

(StateDec) ::= 

(RegExpDec) ::= 

( SeqStatement ) ::= 

(State List) ::= 

(RegExp) ::= 

(MethodCallPattern) ::= 

(PatternArgumentList) ::= 

(PatternArgument} ::= 

" p r o t o c o l  .... { "  { (ProtocolStatement) } " }  " 

(StateOec) I (RegExpOec) I (SeqStatement) 

[ " s t a r t "  ] [ " f i n a l  " ] " s t a t e "  (Javald) [ "=" (JavaBoolExp) ] 
{ " , "  (Javald)[ "=" (JavaBoolExp) ]} ";" 

" r e g e x p "  (Javald "=" (Regexp) { " , "  (Javald) } "=" (RegExp> "; " 

"<" (StateList) ">" ] (RegExp) [ "<" (StateList) ">" ] " ; " 

. . . . .  (]avaZd> { " , "  (Jav.Zd)} 

[ . . . . .  ] " [ "  [(MethodCallPattern) { " , "  (MethodCallPattern) } "]" ] 
(RegExp) ..... I (RegExp) "+" I (Regexp> "? " 
(Regexp> " I" (Regexp) I (RegExp> ", " (Regexp> I " (" (Regexp) ")" 

(Javald> [ ( " [ (PatternArgumentList) ] " ) " ] 

(PatternArgument) { " , "  (PatternArgument) } 

..... [ (JavaType) 

Figure 2: Protocol Grammar Definitions 

RHS states, or both, the sequencing statement is equivalent to a se- 
ries of sequencing statements with the same regular expression and 
all possible LHS-RHS state pairs. The protocol LTS is constructed 
by connecting the DFAs resulting from individual sequencing state- 
ments. 

If a public method of a class or interface is not mentioned in any 
sequencing statement or regular expression definition, it is assumed 
that no restrictions are imposed on its use. In other words, not men- 
tioning a public method f o o  in the protocol declaration is equiva- 
lent to every state in the LTS having a transition on f o o  onto itself. 

2.7 Regular Expressions 
We use a conventional syntax for regular expressions except that 
the comma operator corresponds to concatenation in 1 ex-style reg- 
ular expressions. A vertical bar represents a choice between two 
subprotocols. The operators "* ", "+" ,  and " ? "  denote zero or 
more, one or more, and zero or one occurrences of the regular fac- 
tor, respectively. A list of method call patterns between brackets is 
equivalent to the same list of patterns separated with vertical bars. 
A bracketed list of patterns with the literal ",,~" in front denotes 
the list of all possible method call patterns of any public method of 
the class or interface except the ones listed. Parentheses are used to 
group terms together. 

The simplest method call pattern, an identifier f o o ,  indicates that 
any public method f o o  can be called by a client. By provid- 
ing types as arguments, a smaller set of methods out of the set of 
all overloaded methods can be selected. The literal "*"  inside a 
method call pattern acts as a wild card. 

2.8 Conformance 
How should a conformance relation between two protocols be for- 
mally defined? We employ the principle of request substitutability 
introduced in [13]. Protocol Y conforms to protocol X if all se- 
quences of requests supported by X will be also supported by Y 
and, moreover, that any request refused by Y after accepting one 
of those sequences might also have been refused by X.  More for- 
mally, Y -< X if 

t r a c e s ( X )  C_ t r a c e s ( Y )  (1) 

f a i l u r e s x ( Y )  C_ f a i l u r e s (X)  (2) 

push = ~  push, pop 

Figure 3: The LTS for interface V a r  

E.g., suppose a client makes method calls according to interface 
protocol X on an object implementing the class protocol Y. Condi- 
tion (1) specifies that any sequence of method calls the client might 
make is understood by the object. Condition (2) specifies that i f  af- 
ter accepting a sequence of method calls, the object fails to accept 
the next method call, then this failure is also possible according to 
the interface protocol. 

Without non-determinism, condition (2) is redundant, but i f  internal 
non-determinism is present, as in the case of our S t a c k  example, 
it is necessary to check both conditions. 

As an example, assume we have an interface for an uninitialized 
variable that has two public methods, which we also call p u s h  and 
pop. 

interface Var { 
protocol { 

final start state e; 
final state ne; 
<e> push <ne>; 
<ne> pop I push <ne>; 

} 

public void push(int i); 
public int pop(); 

l 

Figure 3 shows the LTS defined by this protocol. The protocol of 
interface V a r  allows more freedom than that of S t a c k ,  and we 
would expect that v a r  conforms to s t a c k ,  but not vice versa. 
Note though that t r a c e s ( V a r )  = t r a c e s ( S t a c k ) ,  so we cannot 
distinguish between the two protocols by their traces only. How- 
ever, if we compare the failure sequences, the difference between 
the two protocols becomes clear. The protocol of v a r  will always 
accept the call sequence p u s h ,  p o p ,  p o p ,  whereas the proto- 
col of S t a c k  might not. This means that the set of the relative 

53 

16



failures of Stack with respect to Oar is not a subset of the failure 
set of Var. Hence, Vat -< Stack, but Stack ~ Var. 

In [13], an algorithm for conformance checking between two LTSs 
was given. We use this algorithm as part of the type checking 
phase of the compiler. If a class/interface Y extends/implements 
class/interface x, then the protocol of Y must conform to that of 
x. Otherwise, a compilation error is reported. For example, if  we 
declare interface S t a c k  as extending interface O a r  with the pro- 
tocols described above, we will receive a compilation error saying 
that the protocol of S t a c k  does not conform to that of Var .  

There is a serious deficiency in describing protocols with finite- 
state LTSs - -  they are only approximations of real protocols, as 
seen in the S t a c k  protocol. This protocol does not rule out the se- 
quence of  calls p u s h ,  p o p ,  pop .  It only tells that it might fail. 
As we noted earlier, if we tried to specify protocols more precisely, 
we would not be able to perform the conformance check during 
compile time and their language would become too complicated 
for them to be useful. However, we can do better at run time by 
attaching predicates to the states, choosing among branches of the 
LTS at run time. 

Part or all of the internal non-determinism in protocol specifica- 
tions, which plays a role in static conformance checking, is re- 
moved by evaluating the predicates at run time. The remaining 
non-determinism is interpreted as external choice. While we use 
failure semantics for static checks of  the conformance relation be- 
tween declared protocols, language (trace) acceptance is the appro- 
priate semantics for run-time checks of the consistency between 
actual behavior and declared intent. 

2.9 State Predicates 
A state predicate is a Java boolean expression that is an optional 
part of a state declaration and is associated with a state. It is stored 
in the LTS and is evaluated at run time to choose between several 
non-deterministic transitions in the LTS. A state predicate has class 
scope (syntactically it is the same as an initializer of a class field). 

As an example, we can add another method i s E m p t y  ( ) tO Our 
S t a c k  interface and rewrite the interface as follows: 

interface Stack { 
protocol { 

start final state e = isEmpty{); 
final state ne = !isEmpty(); 

<ne> pop <*>; 

<*> push <ne>; 
} 
public void push(int i); 

public int pop(); 

public boolean isEmpty(); 
} 

The state predicates are only used at run time. They have no effect 
on the compile-time conformance check. Moreover, it is not pos- 
sible for the compiler to check whether they are reasonably imple- 
mented and not self-contradictory. However, they provide essential 
information for debugging. 

2.10 Debugging 
For demonstrating the use of  debugging, consider the following ex- 
ample (from some file f o o .  j a v a )  in which the protocol of inter- 

face S t a c k i s v i o l ~ e d  by cal l ingthe method p o p  on an empty 
Stack: 

Stack a = new StackImplementation(); 

a.push(3); 

int x = a.pop(); 
int y = a.pop(); 

Since, in general, the compiler cannot detect protocol violations 
as in the second call of p o p  ( ), we provide run-time debugging 
support to detect such protocol violations. 

There are two main design issues involving debugging. First there 
is the problem of how to implement the LTS tracing so that it can 
be used in already existing code, and second what action should be 
performed when a protocol violation is detected. 

With respect to the first problem, one alternative would be modi- 
fying the Java Virtual Machine so that it traces the LTS. A second 
alternative would be modifying the compiler so that it inlines ad- 
ditional functionality in the client code. The approach we adopted 
is to introduce a Wrapper (as in the Decorator design pattern [7]) 
in the first line between reference a and the S t a c k r m p l e r a e n t a -  
t i o n  object. In this way, any time there is a method call to object 
a, the W r a p p e r  object can trace the protocol (perform an LTS 
transition) as a side effect, while calling the same method on the 
object of class StackImplementation. We can automate this 
modification and make it invisible to the user by modifying the 
compiler. For every assignment in which the left-hand side type is 
an interface type with a protocol, the compiler inserts a W r a p p e r  
constructor call on the right hand side. This approach has signifi- 
cant run-time overhead but the user does not need a special Java 
Virtual Machine to take advantage of  this functionality. In any 
case, this aspect of the implementation strategy is independent of 
the overall approach to specifying and checking object protocols. 

With respect to the second problem, only the user knows exactly 
what to do in case of a protocol error. For maximum flexibility, 
we provide a mechanism for selecting the error handling behav- 
ior. Following the Strategy design pattern [7], we provide an in- 
terface ~ . r r o r r t a n d l e r ,  in which each method corresponds to a 
possible type of protocol violation, and allow the user to select an 
appropriate implementation of this interface. We provide standard 
error handier implementations for logging protocol violations and 
for raising run-time exceptions. Using a simple API users can write 
custom error handiers. 

Run-time tracing of the protocol can serve at least four purposes. 
It is up to the user to decide what role protocols should play in the 
debugging process: 

• Finding errors in the client's implementation. This is po- 
tentially the most useful application of the run-time checking 
of  protocols. If there is a misuse of  a class or interface, it will 
be reflected in a violation of the protocol of that class or in- 
terface and the user will be able to detect this violation by 
tracing its protocol. 

• Debugging the protocol. The user can write test harnesses 
and check if the LTS generated from the protocol behaves as 
expected at run time. 

• Using exceptions to control the application. By using an 
error handier that throws exceptions in case of a protocol vio- 
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lation and by catching these exceptions in the client, the LTS 
can be (mis)used as part of the control of the application. 

• F inding  errors in the server 's implementation.  Using an 
interface with the same protocol as the class and with appro- 
priate state predicates, it is possible to build a test harness for 
the class such that protocol violations indicate errors in the 
class. 

3. EXAMPLE 
To demonstrate the usefulness of protocols in practice, consider the 
class j ava. util. zip. ZipOutputStream: 

public class ZipOutputStream 
extends DeflaterOutputStream { 

public ZipOutputStream(OutputStreamout); 
public 
public 
public 
public 
public 
public 

public 
public 
public 
public 

static final int DEFLATED; 
static final int STORED; 
void close() throw IOException; 
void closeEntry() throw IOException; 
void finish () throws IOException; 
void putNextEntry(ZipEntry e) 
throws IOException; 
void setComment(String comment); 
void setLevel(int level); 
void setMethod(int method); 
synchronized void 
write(byte[] b, int off, int len) 
throws IOException; 

For using an object of this class properly, the user must invoke its 
methods in a particular order, as described, for example, in the book 
Java in a Nutshell [6]: 

This class is a subclass of DeflaterOutput- 
Stream that writes data in API file format to 
an output stream. Before writing any data to 
the Z i p O u t p u t S t r e a m ,  you must begin an entry 
within the ZIP file with p u t N e x t E n t r y  () .  The 
Z i p E n t r y  object passed to this method should spec- 
ify at least a name for the entry. Once you have be- 
gun an entry with putNextEntry ( ), you can write 
the contents of that entry with the w r i t e  ( ) methods. 
When you reach the end of an entry, you can begin a 
new one by calling p u t N e x t E n t r y  ( ) again, or you 
can close the current entry with c l o s e E n t r y  ( ) ,  or 
you can close the stream itself with c l o s e  ( ). 

Before beginning an entry with p u t N e x t E n t r y  ( ) ,  
you can set the compression method and level with 
setMethod ( ) and setLevel ( ). The constants 
DEFLATED and STORED are the two legal values for 
setMethod(). If you use STORED, the entry is 
stored in the ZIP file without any compression. If you 
use DEFLATED, you can also specify the compression 
speed/strength tradeoff bypassing a number from 1 to 
9 to s e t L e v e l  ( ) ,  where 9 gives the strongest and 
slowest level of compression. You can also use the 
constants Deflater.BESTSPEED, Deflater. 
BEST_COMPRESSION, and Deflater .DEFAULT 

_COMPRESSION with the setLevel ( ) method. 

Not only is this text hard to read, it is also of little use in debugging 
a client of class z i p o u t p u t s t r e a m .  Given the simple protocol 

declaration 

protocol { 
((setMethod I setLevel)*, 
putNextEntry, 
write*, 
closeEntry? 
)*, close; 

} 

the appropriate use of the class becomes much more understand- 
able. Furthermore, by adding an interface and an adapter class with 
this protocol, we enable our debugging tool to detect protocol vio- 
lations, such as a call to w r i t e  ( ) that immediately follows a call 
to setMethod ( ). 

The protocol can be made more precise by using the class states 
DEFLATED and STORED as protocol states: 

protocol { 
start state DEFLATED; 
state STORED; 
final state DONE; 

<DEFLATED> 
putNextEntry, write*, closeEntry? 
<DEFLATED>; 

<STORED> 
putNextEntry, write*, closeEntry? 
<STORED>; 

<DEFLATED,STORED> setMethod 
<DEFLATED,STORED>; 

<STORED> setLevel <STORED>; 
<DEFLATED,STORED> close <DONE>; 

Note that the original verbal description of the protocol failed to 
mention in which state (DEFLATED or STORED) an object of type 
z i p o u t p u t S t r e a m  is originally constructed. A quick glance at 
the source code shows that the start state should be DEFLATED. 
Also, the above protocol should be extended to mention the meth- 
ods s e t C o m m e n t  ( ) and f i n i s h  ( ) ,  whose descriptions have 
been left out of the book. 

4. IMPLEMENTATION 
This section describes the changes we made or plan to make to 
the Java Development Kit, Release 1.1.7 [19] for implementing 
compile-time and run-time support for protocols. The compile- 
time conformance check is implemented and fully functional, also 
in the case of separate compilation. In particular, all the examples 
that we consider in the text would compile with our modified Java 
compiler. However, we did not yet implement support for method 
signatures in method call patterns, negation in regular expressions, 
and regular expression (macro) definitions. The run-time debug- 
ging support is also fully functional. We are currently in the pro- 
cess of finishing the implementation in the compiler of generating 
and instantiating the wrapper classes. 

4.1 Compile-Time Implementation 
The compile-time implementation consists of four main parts 

1. Parsing protocols. We modified the j avac compiler so that 
it recognizes the new keyword p r o t o c o l ,  parses protocols, 
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creates a parse tree for each protocol, and reports syntax er- 
rors. 

2. Semantic analysis. In this stage we generate an LTS from 
the parse tree. Each regular expression is first translated into 
an NFA using Thompson's construction and then this NFA 
is translated into a DFA using the subset construction [1, 
pp. 122, 117]. 2 Then a protocol LTS is built by connecting 
these individual DFAs. This automaton is non-deternfinistic, 
in general. We do not convert it to a DFA, since the con- 
formance relation that we use is not preserved under such 
conversion. The protocol LTS has two types of states - -  the 
states that were generated as a result of conversion of  regular 
expressions to DFAs and the states that were explicitly de- 
fined by the programmer in the protocol. The data structure 
representing the latter type of states contains extra informa- 
tion, such as state predicates and source file line and position 
number. 

3. 

4. 

Conformance checking. If a class or interface extends or 
inherits another class or interface and both of  them have pro- 
tocols, the compiler performs the conformance check be- 
tween the protocols. For this conformance check, we use 
the algorithm proposed by Nierstrasz [13]. Since that algo- 
rithm assumes that all states of the LTS are final, we made 
a simple modification to the algorithm so that it can com- 
pare two LTSs that possibly have non-final states. In the 
worst case, the running time of this algorithm is exponen- 
tial in the number of states. However, in a typical case, it is 
much faster. If the LTSs are deterministic, the running time 
is quadratic [13]. Since we do not expect typical protocols 
to be overly non-deterministic, the exponential worst-case 
behavior should not be a problem. Note that we check the 
conformance of the protocol LTSs without taking state pred- 
icates into account (since the task of conformance checking 
would become undecidable otherwise). If the protocol of  the 
subtype does not conform to the protocol of  the supertype, a 
type error is reported. 

Storing protocols in binary code. If the conformance check 
was successful, then a representation of the protocol LTS is 
stored in the class file as a user-defined class attribute. This 
allows performing the conformance check between protocols 
from different source files, which is necessary for separate 
compilation. The class file so created is readable by a stan- 
dard Java compiler and by a standard Java virtual machine. 
However, only a modified compiler is able to read the proto- 
col LTS back from the class file. 

4.2 Run-Time Implementation 
When a piece of  code (the client code) assigns an object (the server) 
to a reference, and this reference has as type an interface with a 
declared protocol, the tool initializes an LTS that corresponds to 
that protocol. 

For example, if  file f o o .  j a v a  contains the line: 

I a = new C(); 

2Recall that the regular expression parts of protocol specifica- 
tions describe language acceptance, and involve no internal non- 
determinism; converting them (individually) to deterministic au- 
tomata thus gives the correct semantics in the overall LTS repre- 
sentation. 

then an LTS is initialized when the client code f o o .  j a v a  assigns 
the server new C ( ) to the reference a. The initialized LTS corre- 
sponds to the protocol of interface I .  The simulation of  the LTS is 
stopped when the reference is garbage collected. 

The main purpose of  the run-time tool is to detect violations of  
the protocol specified in the interface when calling a method on a 
variable of  the interface type. 

Every time the client code calls a server method through the ref- 
erence, the tool checks if  any of the possible current states of  the 
LTS allows that method call. If  so, a state transition is performed 
in the LTS and the server method is executed. After the server 
returns from executing the method, the LTS states for which the 
corresponding state predicate is false are removed from the set of 
possible states. 

I m p l e m e n t a t i o n  O v e r v i e w  
A w r a p p e r  object is inserted between the reference and the server 
in the statement where the assignment occurs. The client code of 
the previous example is modified as follows: 

I a = new Wrapper(new C() .... ); 

In this way, any call to a method of the server through the refer- 
ence first has to go through a method call on the W r a p p e r  object. 
So far this insertion has to be done manually, but we are working 
on modifying the compiler so the insertion will be done automat- 
ically when the client code is compiled. The W r a p p e r  class is 
tailored to the interface, that is, for each interface 1 there is an 
l _ W r a p p e r  class. We are working on modifying the compiler 
so the wrapper class will be created automatically when compiling 
the interface. The common code among the Wrappers is con- 
tained in the superclass T r a c e r .  Additional data structures are 
the Protocollnformation class, used to store the specifica- 
tion of an LTS, and the T r a c e S t a t e  class, used to store the state 
of  an LTS. Sometimes reporting is desirable after the reference has 
been garbage collected, so a list of T r a c e S t a t e s  is kept sepa- 
rately for that purpose. See Figure 4 for a UML diagram of the 
class hierarchy. 

Below we explain in more detail the components of  the ran-time 
implementation. 

D a t a  S t ruc tures  
The data structures involved in the run-time implementation are: 

Several classes /_Wrapper, one for each interface I that 
contains a protocol declaration. The c l a s s / _ W r a p p e r  will 
be created by the compiler when compiling the interface 1. 

Class Tracer: an instance of  this class simulates an LTS. It 
is a superclass for the W r a p p e r  classes. 

Interface ErrorHandler, which can be implemented by 
the user for controlling protocol error handling and reporting. 
Some standard error handler classes are provided, which can 
be extended by the user. 

Class TraceState: an instance of this class holds the cur- 
rent state and the history of an LTS. 
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< < i n t e r f a c e > >  
S t a c k  ) [ T r a c e r  ~ - - ~  T r a c e S t a t e  ~-- 7 

t t T 
I Stack-Wrapp I Protocollnforrnation 

Figure  4: Class diagram for the run-time tool 

• Interface TraceFilter, which can be implemented by the 
user to select T r a c e S t a t e s  currently in memory that sat- 
isfy specified conditions. 

• Class P r o t o c o l I n f o r m a t i o n :  an instance of this class 
holds the specification of an LTS at run time. 

Class Wrapper  
The main role of this class is to enrich any method call to the 
server object with operations to help trace the states of the LTS. A 
W r a p p e r  contains code specific to a particular interface. Every- 
thing else is implemented in class T r a c e r ,  which is a superclass 
of the Wrappers. 

The Wrapper alSO creates the run-time description of the protocol 
as a static object of type P r o t o c o l I n f o r m a t i o n .  

Assume that class StackImpl implements the interface Stack 
defined above, and that line 15 of file f o o .  j a v a  contains the fol- 
lowing assignment: 

Stack a = new StackImpl(); 

When compiling file f o o .  j a v a ,  our compiler will (eventually) 
replace the assignment by 

Stack a = new Stack Wrapper(new StackImpl(), 
this, "foo.java: line 15."); 

The class Stack_Wrapper would have been generated previ- 
ously by the compiler when the interface S t a c k  was compiled: 

public class Stack_Wrapper extends Tracer { 
public Stack_Wrapper(Stack server, 

Object client, 
String lineAndFile) {...} 

public void push(int i) {...} 
public int pop() {...} 
public boolean isEmpty() {...} 
public boolean verify() {...} 

) 

T h e / - - W r a p p e r  class for an interface I implements every method 
of that interface as a sequence of three method calls: 

1. A call to the method announce (), which is inherited from 
class T r a c e r ,  to check if the method is valid, i.e., if  there 
are any edges with that method's name out of any of the cur- 
rent states of the LTS. 

2. A call to the corresponding method of the server. 

3. A call to the method a d v a n c e  ( ) ,  which is inherited from 
class T r a c e r ,  to perform the transition in the LTS to the 
new states, and to check state predicates. 

Method p u s h  ( ) of class S t a c k W r a p p e r  is implemented as 

public void push(int i) { 
announce(METHOD_PUSH); 
server.push(i); 
advance(METHODPUSH); 

} 

The method v e r i f y  ( ) removes all the states that do not satisfy 
their state predicates from the list of current states. This method is 
interface dependent because it evaluates the state predicates. 

Class Tracer 
Class Tracer is the simulator of the LTS. The algorithm used to 
simulate the LTS involves three phases: 

• Announce phase. The Wrapper announces to the Tracer 
that a method is going to be called. The Tracer checks if 
any of the current states allows that method call. If there are 
none we say that the method is invalid. 

• Advance phase, After the method has been called on the 
server, the T r a c e r  computes the list of  new current states 
by finding the states that we can jump to from the old states 
by calling that method. Then the T r a c e r  takes off this list 
all the states that do not satisfy their state predicate. If the 
list is now empty we say that the state is invalid. 

• Finalize phase. This phase occurs when the Wrapper is 
garbage-collected. One would like to detect if  the proto- 
col terminated in a final state or not. According to the Java 
Language Specification [8] any method f i n a l i z e  () im- 
plemented in a class is always called by the virtual machine 
when an object of  this class is about to be garbage collected. 
We employ this feature and insert an appropriate algorithm 
in the method finalize ( ) of the Tracer so that when 
the W r a p p e r  is garbage-collected, it checks if  any of the 
current states is a final state. If none of the current states is a 
final state we say that the protocol is not in a final state. 

To allow users to query the state of a protocol at run time, class 
T r a c e r  maintains a static list of protocol states, with an object of 
class T r a c e S t a t e  per wrapper, and provides a general mecha- 
nism to collect and filter information from this list (see Figure 5). 

Class TraceState  
A T r a c e S t a t e  object must contain the information necessary 
to provide a full report of  the state of a protocol even after the 
W r a p p e r  and its T r a c e r  part have been garbage-collected. It 
should contain, for example, the last method calls performed, a ref- 
erence to the protocol specification, error flags and the class names 
of the server and client, as well as the current states the LTS might 
be in. 

The current states of the LTS are represented as an array of type 
b o o l e a n :  if the b o o l e a n  at index i has value t r u e  then the LTS 
might be in state number i. A T r a c e S t a t e  object also contains 
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Figure 5: Objects at run time. 

a reference to the ErrorHandler object that the Tracer uses 
any time it finds an error. 

The information in a TraceState object is updated with each 
LTS transition. The information is queried by error handlers or if 
the users traverses the static list of trace states to dump the infor- 
mation. 

Class ErrorHandler 
The tool is designed to give maximum flexibility as far as error 
handling is concerned. We apply the Strategy design pattern [7] 
in this situation. When the T r a c e r  encounters an error it de- 
fers the error to an object that implements the V . r r o r H a n d l e r  
interface. The user can create classes that implement the interface 
ErrorHandler and pass an error handier object to the Tracer 
through the static method T r a c e r .  S e t D e f a u l t O p t i o n s  () .  
All W r a p p e r s  that are created from then on will defer errors to 
that v . r r o r H a n d l e r  implementation until the next call to that 
method. 

There are three kinds of errors that can be found at run time by the 
Tracer: 

• Invalid method. This error can happen during the announce 
phase. Typically it will by caused by an error in the interface 
protocol or in the client code. 

• Invalid state. This error can happen during the advance 
phase. Typically it will be caused by an error in the server 
code. 

• Not in final state. This error can happen in the finalize 
phase. There are no current states that are final states. Typ- 
ically some method calls on the client code are missing to 
bring the protocol to a closure. 

Class Protocollnformation 
A ProtocolInformation object stores the run-time descrip- 
tion of a protocol. There is only one protocol information object per 
interface with a protocol. It is created statically by the correspond- 
ing W r a p p e r .  This data structure also has to contain information 
about the interface and the protocol necessary for reporting errors: 
it contains the name of the interface, the names of the methods and 
the names of the states. For each state declared in the protocol, 
the declared name of that state is stored. States that were not de- 
clared are named with the line number and character position of the 
regular expression from which the state originates. 

5. CONCLUSIONS 
We have described an extension of Java with a p r o t o c o l  con- 
struct for specifying sequencing constraints on the order in which 
methods may be called. Protocols can be specified as part of a class 
definition or an interface declaration. We have extended the com- 
piler of Sun Microsystem's Java Development Kit, Release 1.1.7, 
to check the conformance of a class protocol to an interface proto- 
col as part of the interface conformance type check and to generate 
wrapper classes for the user code to interface with a debugging 
tool. An alternative implementation would have been to embed 
protocols in formal JavaDoc comments and to implement the con- 
formance check and the wrapper generation in a preprocessor to the 
Java compiler. Using similar implementation strategies, protocols 
could be added to other object-oriented languages. 

We have also described the design of a debugging tool for testing 
the conformance of a client's code to the protocol declared in an in- 
terface. The tool runs a labeled transition system (LTS) generated 
by the compiler from the protocol declaration. For every method 
call by the client, the LTS checks whether the method call is al- 
lowed according to the protocol. For specifying sequencing con- 
straints that cannot be captured by an LTS, we allow associating 
predicates with states of the LTS. By testing these predicates at run 
time, object states can be mapped to LTS states. 

We have illustrated the usefulness of protocols using as an example 
class java. uti i. z ip. ZipOutputStream. We will experi- 
ment with protocols to determine whether finite-state specifications 
and state predicates are sufficiently expressive in practice. Possible 
extensions to the language would need to be designed such that 
there continues to be a finite-state specification as a subset that al- 
lows decidable type-checking. The dynamic checks could then be 
more precise. Another possible extension would be support for ex- 
pressing two-way collaborations between objects or protocols in- 
volving more than two participating objects. 

We will also experiment with the debugging tool to evaluate its 
practicality and benchmark the run-time overhead of the wrappers 
and of running the LTS. 

The run-time debugging tool, as we have described it, only allows 
testing the conformance of the client's code to the protocol speci- 
fied in the interface. The conformance of the class protocol to the 
interface protocol is checked at compile time. What is missing is 
testing the conformance of the class's code to the declared class 
protocol. In future research, we will explore the automatic gener- 
ation of a test harness from the class protocol for testing this latter 
conformance. 

Currently we combine static checking of protocol declarations with 
run-time checking of actual behaviors; there is no static analysis of 
code. While we believe that complete verification of protocol con- 
formance through code analysis, as proposed by Puntigam [17], is 
likely to be too computationally expensive and too conservative to 
be useful, it is possible that program analysis may play a useful role 
in combination with dynamic checking. We will explore how data 
flow analyses, such as those described by Olender and Osterweil for 
checking sequencing constraints [16, 15], can be used to find some 
violations at compile time and reduce the amount of checking left 
for run time. 

58 

21



Acknowledgments 
The effort of Michal Young was sponsored by the Defense Ad- 
vanced Research Projects Agency and Rome Laboratory, Air Force 
Materiel Command, USAF, under agreement number F30602-97- 
2-0034. The U.S. Government is authorized to reproduce and dis- 
tribute reprints for Governmental purposes not withstanding any 
copyright annotation thereon. The views and conclusions contained 
herein are those of the authors and should not be interpreted as nec- 
essarily representing the official policies or endorsements, either 
expressed or implied, of the Defense Advanced Research Projects 
Agency, Rome Laboratory, or the U.S. Government. 

6. REFERENCES 
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: 

Principles, Techniques, and Tools. Addison-Wesley, 
Reading, Massachusetts, 1988. 

[2] R. Allen and D. Garlan. Formalizing architectural 
connection. In Proceedings of the l Oth ICSE International 
Conference on Software Engineering, pages 71-80. IEEE, 
1994. 

[3] R. Allen and D. Garlan. A formal basis for architectural 
connection. ACM Transactions on Software Engineering and 
Methodology, 6(3):213-249, July 1997. cf. errata in TOSEM 
7(3), July 1998. 

[4] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified 
Modeling Language User Guide. Addison-Wesley, Reading, 
Massachusetts, 1998. 

[5] R. H. Campbell and A. N. Habermann. The specification of 
process synchronization by path expressions. In E. Gelenbe 
and C. Kaiser, editors, Proceedings of the International 
Symposium on Operating Systems, volume 16 of Lecture 
Notes in Computer Science, pages 89-102, Rocquencourt, 
France, 23-25 April 1974. Springer-Verlag, Berlin, New 
York. 

[6] D. Flanagan. Java in a Nutshell: A Desktop Quick Reference. 
O'Reilly & Associates, Sebastopol, California, 2nd edition, 
1997. 

[7] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. 
Design Patterns: Elements of Reusable Object-Oriented 
Software. Addison-Wesley Professional Computing Series. 
Addison-Wesley, Reading, Massachusetts, 1995. 

[8] J. Gosling, B. Joy, and G. Steele. The Java Language 
Specification. The Java Series. Addison-Wesley, Reading, 
Massachusetts, 1996. 

[9] R. B. Kieburtz and A. Silberschatz. Access-right expressions. 
ACM Transactions on Programming Languages and Systems, 
5(1):78-96, Jan. 1983. 

[10] R. Kramer. iContract - the Java design by contract tool. In 
Proceedings of the 1998 on Technology of Object-Oriented 
Languages and Systems (TOOLS '98), Santa Barbara, 
California, 3-7 August 1998. 

[11] B. H. Liskov and J. M. Wing. A behavioral notion of 
subtyping. ACM Transactions on Programming Languages 
and Systems, 16(6): 1811-1841, 1994. 

[12] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying 
distributed software architectures. In Proceedings of the 5th 
European Software Enginering Conference (ESEC 95), 
Sitges, Spain, Sept. 1995. 

[13] O. Nierstrasz. Regular types for active objects. In 
Proceedings of the OOPSLA '93 Conference on 
Object-Oriented Programming Systems, Languages, and 
Applications, pages 1-15. Association for Computing 
Machinery, 1993. ACM SIGPLAN Notices, 28(10), October 
1993. 

[14] K. M. Olender and L. J. Osterweil. Cecil: A sequencing 
constraint language for automatic static analysis generation. 
IEEE Transactions on Software Engineering, 16:268-280, 
Mar. 1990. 

[15] K.M. Olender and L. J. Osterweil. Interprocedural static 
analysis of sequencing constraints. ACM Transactions on 
Software Engineering and Methodology, 1(1):21-52, Jan. 
1992. 

[16] C. Peter and E Puntigam. A concurrent object calculus with 
types that express sequences. In Proceedings of the ECOOP 
Workshop on Semantics of Objects as Processes (SOAP '99), 
Lisbon, Portugal, June 1999. 

[17] E Puntigam. Types that reflect changes of object usability. In 
S.Gjesing and K.Nygaard, editors, Proceedings of the Joint 
Modular Languages Conference (JMLC'97), number 1204 in 
Lecture Notes in Computer Science, pages 55-77, Linz, 
Austria, Aug. 1994. Springer-Verlag. 

[18] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified 
Modeling Language Reference Manual. Addison-Wesley, 
Reading, Massachusetts, 1998. 

[19] Sun Microsystems. Java Development Kit, Release 1.1.7. 
Available at 
< http :// java.sun.com/products/jdk/1.1/ >. 

59 

22



Flow Equations as a Generic Programming Tool for
Manipulation of Attributed Graphs

John Fiskio-Lasseter and Michal Young
�

Department of Computer &
Information Science
University of Oregon
Eugene, OR 97403

�
johnfl,michal � @cs.uoregon.edu

ABSTRACT
The past three decades have seen the creation of several tools that
extract, visualize, and manipulate graph-structured representations
of program information. To facilitate interconnection and exchange
of information between these tools, and to support the prototyp-
ing and development of new tools, it is desirable to have some
generic support for the specification of graph transformations and
exchanges between them.

GENSET is a generic programmable tool for transformation of
graph-structured data. The implementation of the GENSET sys-
tem and the programming paradigm of its language are both based
on the view of a directed graph as a binary relation. Rather than
use traditional relational algebra to specify transformations, how-
ever, we opt instead for the more expressive class of flow equa-
tions. Flow equations—or, more generally, systems of simultane-
ous fixpoint equations—have seen fruitful applications in several
areas, including data and control flow analysis, formal verification,
and logic programming. In GENSET, they provide the fundamental
construct for the programmer to use in defining new transforma-
tions.
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1. INTRODUCTION
Many problems of software analysis can be usefully modelled by

viewing the structure of the problem data as a directed, attributed
graph and defining analyses and transformations on this structure.
Consequently, the past three decades have seen the creation of sev-
eral tools that extract, visualize, and manipulate graph-structured
representations of program and design information, for applica-
tions spanning a broad range of fields. This includes, on the one
hand, specialized programs such as data/control-flow analyzers for
optimizing compilers and model checkers. On the other hand, it
includes a number of tools designed for more general tasks of pro-
gram analysis, such as reverse engineering, program comprehen-
sion, design, and visualization.

In reverse engineering, for instance, fact extractors generate raw
information about a software system (call graphs, directory struc-
ture, etc.). These are ultimately displayed by visualization tools
such as AT&T’s dotty, but only after considerable processing to
elide detail, as well as transformation to the graph notation sup-
ported by the tool.

In a different, hypothetical domain (although the example is in-
spired by a real verification method of de Alfaro [5]), we might
use a web crawler to traverse the pages of a web site, storing the
results as a crawl-graph. If the crawler categorizes web pages ac-
cording to, say, access control attributes, we can inspect the dis-
played crawl graph to look for security violations of private-data
pages (in the form of paths from the home page to private pages that
do not go through control pages). Ideally, we could use a tool that
would transform the crawl graph so that insecure browsing paths
were clearly displayed by a graph viewer.

Three themes run through these examples. First is the use of mul-
tiple graph-based tools in combination, for analyses ranging from
established industrial practices to experimental techniques. With
this comes the second theme: Each composition of tools is predi-
cated on the ability of one tool’s input format to be compatible with
the other’s output. The third theme is displayed in the web crawler
example by the wish for an automatic display of security viola-
tions: the occasional need for rapid creation of a hitherto uncon-
ceived analysis. Taken together, these themes underscore the fol-
lowing: To support the prototyping and development of new tools,
and facilitate the interconnection and exchange of information be-
tween existing tools, it is desirable to have some generic support
for the specification of graph transformations and exchanges be-
tween them.

We believe that flow equations provide an attractive generic tech-
nique for programming such transformations. Viewing the typed
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edges and attributes of a digraph as binary relations, we can de-
fine a system of simultaneous fixpoint equations whose solution is
a set of new relations corresponding to the edges and attributes of
the desired transformed graph. This approach gives a nice com-
bination of declarative programming character, expressive power,
sound theoretical foundations, and modest implementation cost.

To explore this approach, we have created GENSET, a generic
programmable tool for the transformation and exchange of graph-
structured data using flow analysis. At the heart of GENSET is
an interpreter for a domain-specific language of flow equations in
which the desired graph transformations can be programmed. Both
the implementation of the GENSET system and the programming
paradigm of the GENSET language are based on the view of a di-
rected graph as a binary relation, a viewpoint that is extended to the
attributes on the nodes of the graph.

The remainder of this paper is organized as follows. In the next
section we give an overview of the GENSET language. This is fol-
lowed in � 3 by a discussion of some interesting aspects of our im-
plementation. We follow this in � 4 with a discussion of the pos-
sible applications for a tool such as GENSET. A demonstration of
our approach on a real example is given in � 5.Finally, we survey
related work in � 6. Possibilities for future work are offered in the
conclusion of � 7.

2. GENSET—AN OVERVIEW
GENSET is best thought of as a “little language”: a compact,

special-purpose, declarative language designed specifically as a util-
ity for programming transformations of edge-typed, directed, at-
tributed graphs. Such graphs are the primary data value in GENSET,
and the only kind of value a GENSET script produces.

Graphs in GENSET are defined over a single, finite universe of
untyped nodes, called items. Items are defined inductively to be
either atoms (roughly as in Lisp) or pairs of items. Edges may be
thought of as ordered pairs �������	��
��
�� of items, directed from ���	� to

��
 . Every edge in a graph has a type � , out of a finite set of edge
types. Equivalently, we can view each edge type � as a graph with
label � .

As with graph transformation approaches based on relational al-
gebra [9, 11], the graphs input to and constructed by a GENSET

program are represented internally as a collection of binary rela-
tions, one for each edge or node attribute type. The edges of a
graph � are then represented as pairs belonging to relation � . A
node may also have a finite number of attributes, and every attribute
may itself be understood as a relation. For example, a node � with���	��� � attribute of ����� is represented by the edge �������	����� in the���	��� � relation.

The basic programming construct in GENSET is a block of flow
equations: simultaneous equations over a first-order predicate cal-
culus, extended with fixpoint operators. Although syntactically
similar to iteration in an imperative language, there are important
conceptual differences.

The general form can be illustrated by this example:

for � in  �
!����"#�%$'& , ( in  �
)����"*�+$', do
R(x) - . least "0/21
S(y) - . most "0341

od;

Each “statement” can be understood as an equation defining a
new relation: the expression on the right-hand side is used to com-
pute, for each item 5 in the relation’s domain, the set of items in
the relation’s image to which 5 maps. The domain from which 5
is drawn is the value of the corresponding  �
)����"*�+$ expression in

the initialization of the block. In the above example, the equation
R(x) - . least " / 1 defines the relation

6 . � ��57��8��29�5;:<	&���8�:=<�/ �
where < & and < / are the values that result from evaluating the ex-
pressions  �
!����"#�%$'& and ">/ , respectively.

The scope of an “iterator variable” such as � is limited to the
right-hand sides of the equations in which it appears on the LHS.
For example, � is in scope in the expression "0/ , while ( is not.
On the other hand, the scope of identifiers denoting relations is the
entire GENSET script.

Note that R( � ) can occur recursively in the equation " / that
defines it, and that

6
and ? can be mutually recursive. In con-

trast with ordinary iteration, this means that each “statement” in a
for-block is evaluated at least once for each element in the value
of its controlling iterator expression, but it may be re-evaluated as
many times as necessary to reach a fixed point. A finer point here
is that for-blocks are themselves evaluated in source code order,
and so forward references—references to relations that are defined
by blocks following the current one—are disallowed. This avoids
the problem of mutually recursive definitions inter-block, allowing
each block of equations to be individually iterated to a solution.

Whether the least or greatest solution is calculated for an equa-
tion depends on which of the keywords, least or most, is given
at the beginning of the RHS. All equations in GENSET are quali-
fied by one of these two fixpoint operators, which extends over the
entire RHS of an equation. If no operator is specified, the default
choice is least. These keywords function like the @ and A oper-
ators of the @ -calculus [15], but, for simplicity, they are limited to
one use per equation: each one quantifies its whole RHS and they
cannot be nested. For the least fixpoint of an equation, the value
of the corresponding LHS is initialized to the empty set. For the
greatest fixpoint, the LHS is initialized to the “universe,” a value
that must be implemented with some care. See � 3.3 for a discus-
sion of this issue and some of the restrictions that it carries.

Genset expressions evaluate to sets of items. The syntax is given
by seven general classes in Figure 1.

Direct set construction is limited to the empty and singleton sets,
as well as some limited uses of the identifiers denoting relations (asBDC�� 
!��� or E � $ operands). When the single keyword is applied
to a variable � , the value is the singleton set consisting of the node
to which � is currently bound. If applied to the constant "x", the
value is the set

�
x � . Node constants have global scope, and are

created on-the-fly if necessary.
The binary operations are set union, intersection, difference, and

cross-product, each with the expected meaning. Unary operations
are defined only on an expression � whose value <�F is a set of pairs
(i.e., a relation); they facilitate the extraction of a relation’s domain,
image, or both. One can also select a subset of the pairs in a relation
� , using a filter expression � on either the domain or image of � .

The two appl constructs are borrowed from relational algebra
approaches (see [11], for example) for their utility: in the traver-
sal of a graph � , we will often need to know the successors (resp.
predecessors) of a node � . From the relational viewpoint, this cor-
responds to a projection of � through � (or vice-versa), an operation
that we will term relation application (resp. inverse application).
Relations can be applied either to variables or (by enclosing the
identifier in "") node constants.

The combination expressions are (very) loosely modeled on the
syntax of the reduction operator / of APL, but are more similar
in intent to the application in dataflow analysis of a “combination
operator” for combining the flow information collected along dif-
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� � � �������
	����� ������ ���������������� (expressions)���� �!�"�	��
#$���&%'�(�	��
%'�
� �&���
	��)� � null * single("x") + x , , x a constant single( - ) + % &!, , where % & is the current binding for -�� +/.&-'01-32�4%: � , , � a relation

� ��� � � � union � (set union)�� intersect � (set intersection)�� - � (set difference)�� cross � (cross product)

� ��� � � dom � +5- �6 - 287 .9-'01- 2 4%:;:�F , img � +5- 2 
6 - 7 .9-'01- 2 4%:;:�F , base � . dom � 4=<>. img � 4
����������� � � � ofdomain � +?.9-'01- 2 4  .9-'08- 2 4 : �A@ - : : F ,�� ofimage � +?.9-'01- 2 4  .9-'08- 2 4 : �A@ - 2 : : F ,
��� �B�C� � � .&-=4 �� . "x" 4 +5- 2  .9-'01- 2 4 : � , � .9-=4  � . "x" 4 +5- 2  .9- 2 08-=4 : � ,

	��
#�����%"� � � /union - in �/D : �
E F &HGF�I ��E /intersect - in � D : � E J &HGF�I � E
	��
%'� � � if � then � D else � E fi (conditional evaluation)

Figure 1: Summary of GENSET constructs

ferent paths. With either operator, the scope of variable � is the
expression � E .

Finally, GENSET includes a construct for conditional evaluation
of an expression, based on the value of predicate $ . Support is
available for predicates that test emptiness of a set and set con-
tainment/comparison, and predicates may be combined using the
standard propositional boolean connectives (not, and, or).

To illustrate, suppose we have extracted from a program the con-
trol flow graph Flow along with suitable Kill and Gen relations.
We can use these to construct, for example, the classical reaching
definitions analysis[2]:

for x in (base Flow) do
RD(x) := /union w in _Flow(x):

(RD(w) - Kill(w)) union Gen(w);
od;

which is notation in GENSET for the familiar textbook flow equa-
tion

6LK ���4� . MN G!OQP R N�S I�T & U �
6LK ��V*�QWYX C�� � ��V*���[Z]\*��� ��V*�

Another example, using the most operator, is the computation
of dominators. For any node � in the ^ ��� V graph, the dominators
of n are those nodes which must be traversed on any path from the
root of ^ ��� V to � :

for x in (base Flow) do
DomsOf(x) :=
most (if (empty _Flow(x)))

then single(x)
else (single(x) union

(/intersect y in _Flow(x): DomsOf(y)))
fi);

od;

This example also demonstrates the use of an if-then-else
expression. The standard dominators equation is defined by a pair
of simultaneous equations, the choice of which depends on whether
� is the root node of ^ � � V .

3. IMPLEMENTATION
Implementation of an interpreter for the GENSET language in-

volved several interesting challenges. We summarize the main fea-
tures in this section.

3.1 Generic Worklist Algorithm
Interpretation of a GENSET program takes the form of an itera-

tive dataflow analysis [13], using a worklist algorithm:

VL_ C � �*�1` � �Ha ��C ��
7� � 
 ��b $�
)(D�
��"dc�e �)5D�gfh` � ��a ��C ��
�i ���'
)��5� 
 � �kjHj R(a):= �%1
�Lf "dc�eli �=��
 6nm ? � �6 f "dcoeli �=��
�p m ? � �
<$f ��<+5 � � �%�!5D�C B � 6 ��5D�rq. <��4
�_D���s �� $D���7����7
�� ��t	E'5
 C�� ��� C 
!��b �$D5 C �%�0��c �!8��` � ��a ��C ��
�i 5�+�;��c ��8��6 ��5D�uf <

Note that we perform a noninflationary update,
6 ��5D�rf < (in-

stead of
6 ��5D�nf <wv 6 ��5D� ) [1]. Furthermore, this update is per-

formed on any change to
6 ��5D� . As a consequence, the existence of

a fixed point for any equation block, and hence termination of the
worklist algorithm, can only be guaranteed by the equation itself.

The usual approach to ensuring termination is to guarantee that
each equation is monotonic, from which the existence of a fix-
point follows. Although there are ways to give a static guarantee of
monotonicity, or to enforce it at runtime, the current implementa-
tion of GENSET does neither. Instead we lay the responsibility for
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termination of evaluation in the programmer’s hands. The reason
for this lies in the desire to provide as much flexibility to the pro-
grammer as possible. Divergence is not a desirable trait, of course,
but a requirement of monotonicity placed on every equation would
eliminate some analyses that nonetheless have fixpoint solutions.
One example of this is the partial dead code elimination of Knoop
et al [14]. Their algorithm involves an analysis based on functions
that individually are not themselves monotonic, but when consid-
ered as a family enjoy weaker properties sufficient to guarantee the
existence of a fixpoint solution [10].

3.1.1 Variable Dependencies
The other departure from the usual worklist algorithm lies in the

determination of dependent � ��t�E'5
 C � � � C 
)��b � pairs to requeue—
i.e., those equations whose value might change because of the new
value < . The intuition here is that when re-evaluation of an equation6

results in a new value, the change will affect every equation c
whose right-hand side depends on

6
. More to the point, we do not

need to re-evaluate anything else, and so can avoid a complete re-
evaluation of the equation system. Although this optimization does
not offer an improvement in worst-case complexity, in practice, it
can produce significant performance increases.

When the set of equations is fixed syntactically (e.g., the @ -
calculus), dependence consists of one or more occurrences of

6
in the RHS of c , and can be determined entirely from the source
code. But in the case of data-flow equations (and also logic pro-
gramming), we have the added challenge that the equations are
parameterized over one or more variables, defining a schema of
equations. For example,

for � in " D do i�i�i R(x) := " E 1>i�i�i od;
defines one

6
equation for each element of the value of " D . Thus,

when some
6 ���4� changes value, we need to know not just that

some of the equations defined by
6 ���7� could be affected, but which

ones. If this cannot be determined, we must adopt the conservative
approach of re-evaluating

6
on every node in the value of " D .

While this necessitates a dynamic component to dependency de-
termination, in traditional bit-vector dataflow analyses, the form of
the analysis is always the same. When, for some node 5 , the value
of

6 ��5'� changes, the affected equations are those corresponding
to the adjacent nodes (either successors or predecessors) in the
program’s control flow graph, such as Flow, in the

6LK
example

above:
� 8 9'8 : Flow ��5D� � . In imperative programs, this graph is

fixed before analysis and remains static throughout.
A GENSET script, however, represents an even more general

case. While the language can be used to formulate bit-vector anal-
yses over fixed graphs, this is not a necessary assumption. An
equation block’s iterator expression, for example, can be any le-
gal GENSET expression, not just the nodes in the (pre-computed)
Flow graph, and there is no requirement that the RHS of an equa-
tion combine information from successors or predecessors in Flow

or any other single relation.
Our approach is based on a static analysis of the GENSET source

code. During construction of the abstract syntax tree, we associate
with each equation definition

6
, a list of � ��t	E'5
 C�� �������+$D�	����� C � � �

pairs, ��c �����/ � , one for each equation definition c in the same block
as

6
. As mentioned in � 2 above, each block is independently iter-

ated to a fixed point, so no equations defined outside the block can
be affected by a change to

6
. Moreover, in practice the number

of equation definitions in a block is likely small, so this overhead,
although quadratic in the number of equations defined in the block,
should be manageable.

The expression � �/ (not to be confused with a GENSET expres-
sion) represents the computation necessary to determine the items
on which c will need re-evaluation, when the value of

6 ��5D� changes
for some item 5 : this set is given by � �/ ��5'� . Its construction is es-
sentially a partial evaluation of the RHS of c . For an equation
definition

6 ���4� := "0/ , the dependency expression for a defini-
tion c ��(D� := " � (defined over iterator domain � ), is the function
� �/ .��D��i ���$ � 6 �!" � ���4� . ���$ �

6 ��" � ���7� is defined inductively on
the structure of " � as in Fig. 2. Note that for the classical form

A(x) := /<op> w in _Flow(x):
(A(w) - Kill(w)) union Gen(w)

we have

���$ ��� � (A(w) - Kill(w)) union Gen(w) ���7� . � � �
and so the dependency expression is the special case

�D��i �1^ ��� V ���4�5Z ���$ ��� � Flow(x) ���4��� .��D��i �1^ ��� V ���7�[Z��+�
.��D��i ^ ��� V ���4�

3.2 Set and Relation Data Structures
As discussed above, the edges of each graph (or equivalently, the

members of each edge type in a graph) are represented in GenSet as
elements of a binary relation. Since relation application and inverse
application are perhaps the most commonly used expressions in a
GENSET script, it is important that these operations be as fast as
possible. Internally, relations consist of two hash tables, one for the
forward and one for the inverse image. Each entry in the forward
(resp. inverse) table corresponds to an item in the domain (resp.
image), and it is stored in the table with a set of the items in the
image (domain) to which it is related.

Ordinary sets are implemented using the Java HashSet class,
which maximimizes the speed of insertion and retrieval of ele-
ments. One cost for this choice is that we are committed to the
generic semantic view of nodes as being unordered. Except for
equality, we cannot compare one node with another, nor can we
easily choose any particular iteration order over elements (e.g. re-
verse postorder traversal).

3.3 “Infinite” Sets
The specification of a greatest fixpoint equation (using the most

keyword) requires that we have some way to initialize the equation
to the “universe” value and perform set operations (e.g., set differ-
ence) on this value. Unfortunately, it will not do simply to use the
set of nodes contained in input graphs, nor even adding to this the
set of named constants in the source code. On a pragmatic level,
even if this top value could be determined in advance, it may be
very large and hence impractical to use directly, if we can avoid it.

A more significant problem is that in many cases, it is the wrong
value to use. The problem arises from the cross-product operator,
as in this (silly but illustrative) example:

for x in (single("a") union single("b")) do
S(x) := most (S(x) intersect

(single("c") cross single("d")));
od;

This should give the relation
� ��5;�����	�!����� ��� 8�� ���	������� � , but if we

iterate from the universe
� 5;��8�������� � , we will instead get ? .	� .

The point here is that while the number of atoms is fixed by the
graphs given as input, the number of items is not. As a conse-
quence, the universe in general cannot be statically determined: it
is finite but of indeterminate size.
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Figure 2: Static determination, for equation c ��('� - . " � , of the nodes on which " � must be re-evaluated

Our approach is to treat the universe as if it were infinite. For
such a value, we use a “symbolic infinity” by working instead with
the co-enumeration (i.e. the complement) of an infinite set.

However, this itself raises another problem. Nontermination of
expression evaluation is a separate consideration from the diver-
gence that results when no solution exists for an equation. Unlike
the absence of a fixed point, divergence of the expression evaluator
cannot be considered an acceptable possiblity—it would be a bug
in the interpreter itself, not the programmer’s code. In the case of a
cofinite set, this means that we must be careful about enumeration
of any value. In particular, the termination of expression evaluation
with co-enumerated infinite sets requires some restrictions on the
possible forms of a relation: for every set, we must be able either
to enumerate the set itself, or else its complement. Moreover, when
evaluation of a for-block has been iterated to a fixpoint, each rela-
tion defined in the block must be finite. Further restrictions prevent
the possiblity of enumerating an infinite set (the initializations of all
iterators must evaluate to finite sets), or of taking the cross product
with an infinite set operand. As with all other typing properties in
GENSET, these restrictions are checked dynamically.

4. APPLICATIONS
Although GENSET has enough expressive power to write equa-

tions for dataflow analysis or CTL properties, it was designed for
neither optimizing compilation nor model checking, and is not in-
tended to compete with more specialized tools used in these areas
(e.g., SUIF [25]). Indeed, as it lacks the optimizations that render
tractable the storage and rapid traversal of enormous control flow
or state space graphs, it is likely unsuitable for either domain.

GENSET is intended rather to fill a niche similar to the role that
Awk plays in the world of Unix text streams: The use of flow equa-
tions as a specification medium enables the programmer to draw
from a class of graph manipulations which are too complex for
simpler, less flexible tools, and with significantly less programming
effort than would be required to write a special-purpose tool in, say,
C or Java.

Hopefully, the near future will see the adoption of a standard
graph exchange format for analysis and visualization tools; for ex-
ample, the graph-based GXL format for XML [12]. In the presence
of such a standard, we foresee a natural application for GENSET

in the construction of “pipe-fitting” components that facilitate the
composition of off-the-shelf tools. In support of this goal, we de-
signed GENSET to be as flexible as possible with respect to support
of new exchange formats. The current implementation includes
support for RSF (Rigi Standard Format) and AT&T “dot” format,
as well as the early untyped form of GXL described in [12]. We
are currently working to extend support to include the recent GXL
changes.

5. EXAMPLE
Flow equations have traditionally been associated with problem

domains in compilers and logic programming. To illustrate their
utility as a basis for graph transformation tasks relevant to the anal-
ysis of programs and software systems, we apply our approach to
a transformation known in the reverse engineering community as
lifting.

As a basis for our analysis, we chose the Linux kernel exam-
ple from the PBS Guinea Pig repository [18]. From this, we chose
as an input graph a selection of edge types from the raw exam-
ple: 3 relations used in the calculation (contain, funcdef, and
sourcecall), and one that did not play a part. GENSET does not
yet have a parameterization mechanism for input arguments1, so
these are read into a global symbol table, along the lines of extern
variables in C. Edges we actually used represented 8136 function
definitions, 2068 source calls, and 1149 containment edges (direc-
tory structure). There were edges included in the file but not used
in the transformation in the form of 6749 include edges.

A lifting transformation is used to produce a high-level view of a
relation. This is done by lifting a relation between low-level entities
(such as the original function to function call graph stored in the
factbase by the sourcecalls relation) to a more abstract version
of the relation, between higher-level entities (such as the directory
to directory level). Those entities considered at the top level are
represented as edges in the toplevel relation. The hierarchy is
given here by the contain relation, which in the original factbase
described containment of files in directories as well as directory
nesting.

In the usual form of lifting, the toplevel relation would con-
sist of exactly those entities that are at or above some level in theD
This is under development. See the comments in � 7.

27



sched.ss

hardware.ss

fs-drv.ss

mm.ss fs.ss

ipc.ss

init.ss

lib.ss

net.ss

Figure 3: Lifted top-level calls—the tlcall graph

contain hierarchy. If we are interested only in the calls between a
few different subsystems regardless of their position in the hierar-
chy, this approach will give either too much information, too little,
or both. To illustrate the flexibility of our approach here, we took
a slight departure from the usual transformation, and defined the
toplevel relation manually to consist of 9 edges between subsys-
tems chosen at varying levels in the directory hierarchy. The result-
ing graph analyzed consisted of 9,059 nodes and 17,832 edges.

The analysis is specified in 21 lines of GENSET code as a set of
three equation blocks:

for ss in (base contain) do
tlcontain(ss) := (/union child in contain(ss) :

single(child) union inherit(child));
unmarkedChildren(ss) :=

contain(ss) - dom toplevel;
inherit(ss) := (/union unmarked in

unmarkedChildren(ss):
tlcontain(unmarked));

od;

for func in (base sourcecall),
dir in (dom tlcontain) do

inDir(func) :=
/union file in _funcdef(func):

_tlcontain(file);
dirCalls(dir) :=

(/union file in tlcontain(dir):
(/union f in funcdef(file) :

(/union g in sourcecall(f): inDir(g))
));

od;

for tldir in (base toplevel) do
tlcall(tldir) := dirCalls(tldir)

intersect (dom toplevel);
od;

In the first block, we collapse nodes corresponding to files into
the nearest ancestor directory node which has been marked as (i.e.
included in) toplevel: this is the tlcontain relation.

In the second block the sourcecall relation representing calls
between functions is lifted to become the dirCalls relation, rep-

resenting the presence of a call between two directories. This is
computed for all directories, not just those marked as toplevel.
The extraneous calls from non-toplevel directories are filtered
out in the third block, leaving the tlcall relation from toplevel
directory to toplevel directory.

Analysis was run on a Macintosh Quicksilver with 900 Mhz G4
and 1.2 GB of RAM. The resulting graph is given in Fig. 3. The
slowest step was the 4 seconds required to read the input graph (in
RSF format). After the graph was represented in memory, execu-
tion of the GENSET script completed in less than 2 seconds.

6. RELATED WORK
A variety of programmable graph transformation tools have been

developed, with explicit application to problems of program and
software system analysis.

The approach closest to our own is the specification of transfor-
mations with relational algebra (RA). Given the tight mathematical
correspondence between binary relations and directed graphs [22],
it is unsurprising that the use of RA has very natural applications
in graph transformation; we have borrowed a few of the operators
ourselves.

A number of programmable graph transformation systems based
on extensions of this algebra have been presented in the literature
[3, 4, 9, 11, 16, 17, 19]. One of the common extensions is to
augment RA with a transitive closure operator (this is used in all
of the works cited here). With this extension, several important
graph transformations have been implemented, notably in the area
of software architecture. Holt, for example, shows in [11] how
to implement six important architectural transformations using his
Grok system, including the lifting transformation we demonstrated
in this paper.

We do not yet know how the performance of GENSET com-
pares with that of the extended relational algebra systems across the
whole range of transformations expressible in RA (with or with-
out transitive closure). Thus far, however, our experimental re-
sults (such as the example presented in this paper) suggest that the
flow equation approach embodied in GENSET will be competitive
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with RA approaches. (The question of greater programming con-
venience is still a matter of debate.)

The primary difference between a flow equation and relational
algebra approach lies in the expressive power of the underlying lan-
guages. RA by itself cannot express any kind of recursion (hence
the need to add transitive closure as a magic operator). Even with
transitive closure, the GENSET language is strictly more expressive
than RA languages. On the other hand, we will suffer from a worse
worst-case, since some queries expressible in GENSET will be of a
higher complexity—indeed, since one can write divergent analyses
in GENSET, our worst case is unbounded.

The other major approach to graph transformation comes from
the research in graph grammars, particularly systems for graph-
rewriting-based transformations. One of the best known of these is
the PROGRES project [20, 23]. In this system, transformations are
specified with graph-rewriting rules which are using to generate
C code for a stand-alone prototype. This approach offers greater
expressive power than flow equations (it is computationally com-
plete). However, it appears to suffer from the general complexity
of graph rewriting—for example, the necessity of using subgraph
isomorphism detection to implement generalized pattern matching.
Using PROGRES to specify several common architectural transfor-
mations, Fahmy and Holt [6] report that the system, while effective
at small prototypes, is impractical for transforming the large graphs
associated with real software systems.

Generic iterative equation solvers have been developed primarily
within the logic programming field. Our approach to the problem
of dynamic determination of dependencies has been influenced in
part by work presented in [8]. Another generic dataflow analysis
tool is the Fixpoint-Analysis Machine described by Steffen et al
[24], which handles generic instances from several classes of flow
analysis whose reductions to equivalent model checking problems
are known.

Recently Rayside and Kontogiannis [21] have developed another
generic worklist algorithm that, like ours, is designed for towards
graph-based analyses. Their work is targeted specifically toward
generic support for graph reachability problems, which leads to
three significant differences from our version. First of all, their
test for re-evaluation is specifically for a monotonic change, while
we base re-evaluation on a test for any changes, allowing for the
possibility of non-monotone functions to be evaluated. Further, the
user of their algorithm must specify manually the lattice to be used,
and in particular, must define the partial order relation between ele-
ments, which is necessary for detecting monotonic change. Even if
we were to enforce monotonicity, we always use the same lattice—
the power set of the set of possible nodes in the relation’s image,
ordered by subset/superset inclusion. Finally, because their algo-
rithm is targeted towards reachability analyses on a fixed graph, the
determination of dependent equations is always done in the tradi-
tional static fashion: by taking the successors in the graph of the
current node. As discussed in � 3.1 above, this approach to depen-
dency determination does not work in our more general setting.

An interesting alternative solution to the problem of representing
infinite sets is Alfaro’s constructive @ -calculus [5] in which GFP
equations are restricted by the requirement that the universe of dis-
course be both finite and explicitly stated. We are still investigating
a comparison of this approach with our own.

7. CONCLUSION AND FUTURE WORK
The expressiveness and relative efficiency of flow analysis ap-

pears to be a useful point in the design space of graph transforma-
tion tools for program analysis. Meanwhile, there remain a number
of opportunities for further development.

Two aspects of the existing implementation of GENSET need im-
provement. First, the requirement that equation blocks be evaluated
in source code order avoids the mess of mutual recursion between
blocks, but is a shortcoming in the declarative character of the lan-
guage. The alternative is to add a “program-wide” iteration, along
with the use of dependency graphs both within and between equa-
tion blocks to determine, if possible, a better evaluation order than
that given by the source code. Second, the language lacks effective
schemes for parameterization and library construction. Relations
that are not explicitly defined by equations in a script are presumed
to exist in a global symbol table before evaluation, with the symbol
value assumed explicitly in the source code. We are currently de-
veloping a procedure-definition facility for the reuse of commonly
used equations (e.g. transitive closure) and will remove assump-
tions about the global symbols with a top-level ”main” construct.

From a philosophical point of view, the paradigm of the GENSET

language is compatible with relational algebra and it may benefit
from the inclusion of many of the ordinary RA operators. As it
stands, the language is strictly more expressive than RA, and such
additions would therefore be “syntactic sugar,” but may offer more
convenience for programmmers.

More challenging is the possibility of developing a static type
system to guarantee finiteness and union-compatibility properties
of relations, eliminating the need for many of the runtime checks
that are performed in the present version. In addition to potential
improvements in the runtime performance of interpretation, this
would make the possibility of a compiler for the language more
appealing.

Finally, it is important to understand the tradeoffs between ex-
pressiveness and efficiency among the variety of graph transfor-
mation approaches available for manipulating representations of
programs and software systems. Fahmy et al [6, 7] have begun
this task with a comparison of manipulation using relational alge-
bra and graph rewriting. We expect that our flow analysis approach
will fall somewhere between these two, but more benchmark analy-
ses are needed with representative, practical examples. Widespread
adoption of a single exchange format such as GXL may help; ad-
ditionally, we are developing conversions among some of the more
widely used graph representations to facilitate comparisons.
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Non-monotone fixpoint iterations to resolve second order
effects. In 6th International Conference on Compiler
Construction (CC ’96), LNCS 1060, pages 106–120.
Springer, 1996.

[11] R. C. Holt. Structural manipulations of software architecture
using Tarski relational algebra. In 5th Working Conference
on Reverse Engineering (WCRE’98), pages 210–219. IEEE
Pr., 1998.

[12] R. C. Holt, A. Winter, and A. Schürr. GXL: Toward a
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